Childhood Pneumonia

Clinical presentation and Early Detection & Referral

16.01.2025

Dr Kamal Kumar Singhal

DCH, MD, DM (Pediatric Pulmonology)

Professor, Department of Pediatrics

Lady Hardinge Medical College and Kalawati Saran Children's Hospital,

Shaheed Bhagat Singh Marg, New Delhi

BURDEN

• Globally

- Under 5 mortality: Major culprit
 - 14% deaths (WHO, 2019)
 - 2400 lives per day
 - 7.4 lakh per year
 - Pneumonia is a disease of poverty, a sign of inequality
 - 84% of child deaths from pneumonia in 30 countries mostly sub-Saharan Africa & Asia.

• India

- 11 % of Global pneumonia deaths (UNICEF 2019)
 - Contributing factors: malnutrition, low birth weight, non exclusive breast feeding, lack of immunisation, indoor pollution and overcrowding.
- Regional Disparity: Kerala & Tamil Nadu reporting lower incidence rates

What is Pneumonia?

Pneumonia in Children: Definitions

- Pathologist's Definition:
 - Inflammation of the lung parenchyma, often caused by infection.
 - Histologically, it may show neutrophilic infiltration, edema, and alveolar hemorrhage depending on the causative organism.

- Radiologist's Definition:
 - Chest X-ray: New infiltrates, consolidation, or opacities in the lung fields.
 - The presence of air bronchograms or pleural effusion may suggest bacterial pneumonia, while lobar consolidation is indicative of more severe disease.

We need a clinician's definition of Pneumonia !

What symptoms or complaints would prompt a parent to bring a child to a healthcare facility?

WHEEZE

HEADACHE

TACHYPNEA BREATHLESSNESS

ABDOMINAL PAIN

DIFFICULTY IN BREATHING CHEST PAIN

Which equipment is most useful for diagnosing pneumonia in children?

A) Pulse Oximeter and Thermometer

• B) Stethoscope

Acute onset difficult breathing

Respiratory

Asthma Bronchiolitis Viral croup Foreign body in the airways Pneumonia Effusion and Empyema Pneumothorax

Non-Respiratory

Congestive heart failure Raised intra-cranial tension e.g. Meningitis Metabolic acidosis e.g. Diabetic Ketoacidosis, Renal Failure

What is fast breathing?

Fast breathing

To be counted for complete 60 seconds

Respiratory rate

- <1 year age, RR of 70 breaths/min Sensitivity 63% and Specificity 89% for Hypoxaemia
- <5 years age, the WHO definitions for tachypnea Sensitivity 74% and specificity 67% for Radiographically-defined Pneumonia

Only fast breathing, No danger signs Radiological pneumonia 14%, lobar pneumonia 1% Work of breathing, compared to fast breathing, is more indicative of the likelihood of pneumonia

Cough or Difficulty in breathing with

F

WHO/IAP

Couch

Cough or Difficulty in breathing with

Change in WHO classification

Clinical features	OLD	NEW	
Cough/cold	NO PNEUMONIA: COUGH COLD	NO PNEUMONIA: COUGH COLD	
Fast Breathing	PNEUMONIA	PNEUMONIA	
Chest indrawing	SEVERE PNEUMONIA		
General danger signs			
Severe respiratory distress	VERY SEVERE PNEUMONIA	SEVERE PNEUMONIA	
Central cyanosis			

Change in treatment approach

Clinical features	OLD	NEW
Cough/cold	Admission X Antibiotics X	Admission X Antibiotics X
Fast Breathing Chest indrawing	Admission X Antibiotics V Admit V	Admission X Antibiotics V
General danger signs	Antiblotics V	
Severe respiratory distress		AdmitVAntibioticsV
Central cyanosis		

TREATMENT

NO PNEUMONIA: COUGH COLD	<u>No admission, No antibiotics</u> Soothe the throat and relieve cough with safe remedy Advise when to return
PNEUMONIA	No admission Oral Antibiotics Advise when to return
SEVERE PNEUMONIA	<u>Admit</u> <u>Injectable</u> Antibiotics Oxygen if saturation < 90%. Manage airway Treat high fever

What is the most prevalent cause of pneumonia throughout childhood?

A) Streptococcus pneumoniae
B) Mycoplasma pneumoniae
C) Viral infections
D) Haemophilus influenzae type b

What is the most prevalent cause of pneumonia throughout childhood?

A) Streptococcus pneumoniae B) Mycoplasma pneumoniae C) Viral infections D) Haemophilus influenzae type b

Correct Answer: C) **Viral** infections, such as *Respiratory Syncytial Virus* (RSV), Influenza, and Parainfluenza

Most common agents causing CAP according to age					
Newborn -3 months	1-6 months	6-12 months	1-5 yrs	> 5 yrs	
Group B Streptococcus Enteric Gram-negative RSV	Viruses S pneumoniae H influenzae S aureus M catarrhalis Chlamydia trachomatis Ureaplasma urealyticum B pertussis	Viruses S pneumoniae H influenza S. aureus Moraxella catarrhalis	Viruses M. Pneumoniae C. pneumoniae S. pneumoniae		

Viruses most prevalent cause of pneumonia throughout Childhood Streptococcus pneumoniae is the leading bacterial cause of CAP across all age groups

Coinfections, both with two or more viruses, or with viruses and bacteria, are very common. Coinfection rates up to 75% are commonly reported in infants

If there is additional wheeze!

Preschool Wheezer

- 1/4 infants- 1 episode by 9 months
- 1/2 children- 1 episode by 6yrs
- Tendency to reoccur.
- Onset is earlier in males

Is there a role of Bronchodilator ?

Wheezing on auscultation - present in 60-80% of lower chest indrawing despite excluding asthma

Hazir T et al. New Outpatient Short-Course Home Oral Therapy for Severe Pneumonia Study Group. Ambulatory short-course high-dose oral amoxicillin for treatment of severe pneumonia in children: a randomised equivalency trial. Lancet 2008; 371: 49-56.

Signs of pneumonia disappear in almost half of the cases with nebulization

Awasthi S, Agarwal G, Kabra SK, Singhi S, Kulkarni M, et al. (2008) Does 3-Day Course of Oral Amoxycillin Benefit Children of Non-Severe Pneumonia with Wheeze: A Multicentric Randomised Controlled Trial. PLoS ONE 3(4): e1991. doi:10.1371/journal.pone.0001991

Thus there should be a role !

Table 8. Differe Diagnosis	Asthma	 History of recurrent wheeze, chest tightness, some
Asthma	Bronchiolitis	First episode of wheeze in a child aged < 2 years Wheeze episode at time of econopol bronchielitie
Bronchiolitis	Wheeze associated with cough or cold	 Wheeze always related to coughs and colds No family or personal history of asthma, eczema, hay-fever Brolonged expiration
Wheeze associated with cough or cold	Foreign body	 History of sudden onset of choking or wheezing Wheeze may be unilateral Air trapping with hyper-resonance and mediastinal shift Signs of lung collapse: reduced air entry and impaired
Foreign body	Pneumonia	 Fever Coarse crackles Grunting
Pneumonia		Organization

.....

Investigations

Which of the following investigations are routinely indicated in children with non-severe community-acquired pneumonia?

A) Chest X-rayB) Microbiological investigationsD) Acute phase reactantsE) None of the above

Which of the following investigations are routinely indicated in children with non-severe community-acquired pneumonia?

A) Chest X-rayB) Microbiological investigationsD) Acute phase reactantsE) None of the above

Answer: E) None of the above

Should I get a chest X ray in all ?

Should **not be a routine investigation in** community acquired pneumonia Signs and symptoms of pneumonia who are **not admitted** should **not have CXR**

BTS. Thorax 2011;66:ii1eii23. doi:10.1136/thoraxjnl-2011-200598

Severe pneumonia: Chest X-ray to identify pleural effusion, empyema, pneumothorax, pneumatocoele, interstitial pneumonia or pericardial effusion

WHO

Seriously ill/Severe pneumonia
Complications suspected
Alternative diagnosis
Severe Acute Malnutrition
Post measles infections

Should I do Microbiological investigations in all ?

Not Routinely in mild disease or those being treated in community Needed in: Who fail to improve and in those who have progressive deterioration

Available investigations

Blood culture: Positivity is uncommon

Nasopharyngeal secretions and nasal swabs: viral detection (PCR and/or immunofluorescence)

Serology: Acute and convalescent for respiratory viruses, Mycoplasma and Chlamydia

Pleural fluid for microscopy, culture, pneumococcal antigen detection and/or PCR

BTS. Thorax 2011;66:ii1eii23. doi:10.1136/thoraxjnl-2011-200598

Can Acute phase reactants differentiate b/w Virus/ Bacterial/ atypical organism ?

Acute phase reactants Procalcitonin Cytokines C reactive protein (CRP) ESR and White blood cell count

These reactants Individually and in combination

No clinical utility in distinguishing viral from bacterial infections Should not be tested routinely

BTS. Thorax 2011;66:ii1eii23. doi:10.1136/thoraxjnl-2011-200598

Acute phase reactants:
No clinical utility in distinguishing viral from bacterial
Should not be tested routinely
[A]

C reactive protein: Not useful in uncomplicated pneumonia Should not be measured routinely. [A+]

Complications

Lung abscess

Bronchiectasis

When to refer to Intensive care units in acute pneumonia?

Cyanosis: $\text{Spo}_2 < 92\%$ on Fio_2 of ≥ 0.50

Shock

Sustained tachycardia or Inadequate blood pressure or Need for pharmacologic support of blood pressure or perfusion

Need for ventillatory support

Requires invasive ventilation

Requires use of noninvasive positive pressure ventilation

Has impending respiratory failure

Altered mental status

Due to hypercarbia or hypoxemia as a result of pneumonia

When to refer for opinion?

- Slowly resolving pneumonia:
 - Persistence of CXR abnormalities for >1 month in a clinically improved host
- Non-Resolving/ Persistent pneumonia:
 - Persistence of symptoms and CXR abnormalities for >1 month in a child with LRTI
- Recurrent pneumonia:
 - Multiple episodes with evidence of complete resolution in between.
 - <u>></u> 2 episodes within 1yr or
 - > 3 such episodes over any time period

When to discharge ?

- Respiratory distress has resolved
- No hypoxemia (oxygen saturation, > 90%)
- Feeding well
- Able to take oral medication or have completed a course of parenteral antibiotics
- Parents understand the signs of pneumonia, risk factors and when to return
Thank You

Which equipment is most useful for diagnosing pneumonia in children?

A) Pulse Oximeter and Thermometer

• B) Stethoscope

What is the most prevalent cause of pneumonia throughout childhood?

A) Streptococcus pneumoniae
B) Mycoplasma pneumoniae
C) Viral infections
D) Haemophilus influenzae type b

Which of the following investigations are routinely indicated in children with non-severe community-acquired pneumonia?

A) Chest X-rayB) Microbiological investigationsD) Acute phase reactantsE) None of the above

Clinical Management of Severe Childhood Pneumonia

Dr Hema Gupta Mittal

Professor and In-charge Division of Pediatric Pulmonology , ABVIMS& RMLH Delhi

Definition: Severe Pneumonia : WHO definition

Danger signs: Grunt, Not able to drink, persistent vomiting, convulsions, lethargic or unconscious, stridor in a calm child or severe malnutrition

PRINCIPLES in Management of Severe Pneumonia

Assessment and	Antibiotics	Other medications:
management of	Which, why, when, how	Antivirals, nebulization,
respiratory distress	, where	cough syrups etc
Respiratory and cough hygiene	Monitoring , Investigations and Complications	Prevention stratergies

Case

- Laxmi, 7 days old baby with
- refusal of feeds , breathing difficulty * 3 days
- O/E –baby is dull .RR :74/ min . Spo2 : 85%
- Multiple Pustules present over the trunk

Diagnosis ? Treatment ?

Antibiotics: Which ?When ??Why??

F

Bacteria	Streptococcus pneumoniae, Hemophilus influenzae, Staphylococcus aureus, Mycobacterium tuberculosis, Bordetella pertussis, Klebsiella pneumoniae
Viruses (Most common)	Respiratory Syncytial Viruses, Rhinovirus, Influenza Virus, Human Metapneumovirus, Adeno virus, Measles, CMV, EBV
Fungi	Aspergillus, Candida, Pneumocystis Jirovecii (immunocompromised)
Noninfectious	Aspiration of food /gastric acid, foreign bodies, hydrocarbons, lipid substances, hypersensitivity reactions, drug or radiation

Organism & Clues		
Staphylococcus:Pyoderma, Measles	Gram negative, Staph aureus: PEM	
Pneumocystis:HIV	Gram negative, Aspergillus: Neutropenia	
Pseudomonas, Staphylococcus: <mark>CF</mark>	Anaerobes: Aspiration	

Common Etiology of Pneumonia in children in LMICs

Viruses are most common pathogens.. In 2015, RSV & Influenza accounted

for 20% & 10% cases, respectively.

The increased use of pneumococcal conjugate vaccine (PCV) and *Haemophilus influenzae type b* (Hib) vaccine has **changed pneumonia etiology**, with *Staphylococcus aureus* and *H. influenzae* non-type b now the commonest bacterial pathogens

Differentiating etiologies

Bacterial

Viral

More toxic, Rapid progression Lobar pneumonia Complications: Empyema, Abscess Less toxic ,Follows URTI, Gradual ;Wheeze+/-, bronchiolitis ,Usually b/l

Atypical

Less toxic, "walking pneumonia" Wheezing, diffuse Extra pulmonary manifestations++

Lobar consolidation+ air bronchogram;Patchy/Cavitatory/ Round pneumonia/ Pneumatoceles/ empyema

Diffuse GGO/Interstitial infiltrates/Multifocal patchy consolidation OR Lobar / segmental atelectasis, ARDS

Diffuse interstitial/ reticular pattern /Hilar lymphadenopathy/ Normal chest X-ray

Antibiotics recommendations: IPD

: ANTIBIOTIC THERAPY FOR PNEUMONIA/SEPSIS IN INFANTS <2 MONTHS

Antibiotic	Each Dose	Frequency		Route	Duration
	(mg/kg/dose)	< 7days age	> 7days age]	(Days)
Inj. Ampicillin*	50	12 hourly	8 hourly	IV, IM	7-10
And Inj. Gentamicin	5	24 hourly	24 hourly	IV, IM	7-10
Inj. Amikacin	15	24 hourly	24 hourly	IV, IM	7-10

*If concomitant meningitis is suspected, the drugs should be given IV and Inj. Cefotaxime 50 mg/kg IV 8 hourly is used instead of Ampicillin. The total duration of therapy in meningitis is 2-3 weeks. In case of suspected staphylococcal infection, Injection Cloxacillin 50mg/kg 8 hourly is to be added to the regime.

R 3: Severe pneumonia WHO

1 st line: parenteral ampicillin (or penicillin) and gentamicin*5d 2nd line :Ceftriaxone: if failed on 1st line

Antibiotics recommendations: IPD

F

	Age <2m	>2m-5y	>5y
1 st line	Cefotaxime/Ceftriaxone ± gentamicin/amikacin	Ampicillin	Ampicillin
2 nd line	Cefotaxime/Ceftriaxone ± gentamicin/amikacin Piperacillin tazobactam/ Cefoperazone sulbactam	Co -amoxyclav OR Cefotaxime OR ceftriaxone	Co -amoxyclav OR Cefotaxime OR ceftriaxone or <mark>Azithromycin</mark>
Stap aureus	Ceftriaxone+ <mark>cloxacillin</mark> OR cefuroxime or Coamoxyclav +gentamicin or amikacin 2nd line ceftriaxone +vancomycin/clindamycin	Ceftriaxone+cloxacillin OR cefuroxime or Coamoxyclav or cefazolin 2nd line ceftriaxone +vancomycin/clindamycin	Ceftriaxone+cloxacillin OR cefuroxime or Coamoxyclav or cefazolin 2nd line ceftriaxone +vancomycin or clindamycin

Characteristics and Management: Staph Pneumonia

	MSSA	MRSA
Clinical setting Age group Course & outcome complications	Community Higher Less severe Lesser	Healthcare/community Younger More severe, ICU admissions Higher:pneumatoceles, Pleural effusion
Treatment	Cefazolin (50 mg/kg/d, BD or TID) /Clox (100mg/Kg TID) +/- Aminoglycoside (gentamicin (5–7 mg/kg/d, OD) Or Amikacin (15 mg/kg/d, OD)	Vancomycin (40 mg/Kg/d in QID) /Clindamycin(20 mg/kg/d, TID or QID) Linezolid (10 mg/kg/d), TID
Duration	7 to 10 days	14 d if no complications4-6 weeks if complications

Viral Pneumonias and Antivirals

- No effective antivirals available for most viral pneumonias (few exceptions)
- Anti-virals used to treat sporadic or epidemic or pandemic viral pneumonia include: Oseltamivir, Zanamivir, Peramivir, Ribavirin, Remdesivir (off label), Ganciclovir
- Empirical antibiotics **should be** used in severe viral pneumonias in hospitals/ICU
 - Influenza/CMV/Adenovirys/ RSV/ rhino...
 - SARS CoV 2 and Covid 19 : lessons learnt !!!!

Case 1

- Laxmi, 7 days old baby with
- refusal of feeds , breathing difficulty * 3 days
- O/E –baby is dull .RR :74/ min . Spo2 : 85%
- Multiple Pustules present over the trunk

Diagnosis ? Treatment ?

- Admit
- Severe Pneumonia with Sepsis
- Probably Staphylococcal
- Vancomycin plus an aminoglycoside

Oxygen therapy

• Why important: Hypoxia

✓ Common occurrence in pneumonia (severe & complicated)✓ Increases mortality

- Goal: SpO2 > 92-94%
- Indications

Ę

✓ Severe pneumonia(grunting/cyanosis/Severe lower chest in-drawing)
✓ Respiratory rate ≥70 breaths/min
✓ Hypoxia (Sat <90%)

3 Guidelines

^{*}If oxygen saturation < 90%, refer as Severe Pneumonia or Very Severe Disease

^{**}If the child has wheezing, give 3 doses of nebulized salbutamol for 20 minutes; or 2-4 puffs of salbutamol MDI (at a gap of 2-3 min between each puff) with spacer repeated every 20 minutes and if there is improvement continue bronchodilators under monitoring

^{***} If referral is not feasible or refused, manage with oral amoxicillin twice a day and injection gentamicin once a day for 7 days in consultation with MO PHC and daily assessment (see table 4)

Methods of oxygen administration

• Heated, humidified oxygen

Ę

- Nasal prongs or a nasal or nasopharyngeal catheter (no face or head mask)
- Oxygen flow-rate with canula, head box, and face mask ???
- Other devices: CPAP, HHHFNC, Invasive ventilation

Fluid therapy: why important ?

- Unable to maintain their fluid intake because of breathlessness or fatigue
- Non-severe cases: breast-feeding or oral fluid/feed
- Options in severe case: Naso-gastric or Intravenous fluid therapy
- Indication of IV fluids

F

- ✓ Neonates & young children with severe distress✓ Persistent vomiting
- Monitor fluid balance & serum electrolyte (e.g., Na⁺): *SIADH is likely in severe* & *complicated cases*

Other Medications

• Fever

F

 ✓ Paracetamol (@15mg/kg/dose) to keep child comfortable (avoid tepid sponging)

• Cough

- ✓ Avoid cough suppressants.
- ✓Intake of adequate fluids.
- ✓ Household remedies (Tulsi, ginger, honey)
- ✓ No role of nebulization

- Vomiting (post-tussive)
 - ✓ Anti-emetics routinely not required✓ If persistent vomiting: anti-emetics
- Maintain proper hydration
- Identifying signs of deterioration/ serious illness and complications
- Access to referral facility (providing a 'safety net')

**If the child has wheezing, give 3 doses of nebulized salbutamol for 20 minutes; or 2-4 puffs of salbutamol MDI (at a gap of 2-3 min between each puff) with spacer repeated every 20 minutes and if there is improvement continue bronchodilators under monitoring

Counselling in Pneumonia

- Counselling to Parents, Family & the Child
- Why Counselling ?

F

- Parents & Children Under stress
- Psychological morbidities (post ICU care)
- -posttraumatic stress disorder, anxiety disorder, depression.
 - Financial stress
 - Worry about recovery & long-term complications
 - **Counselling** about Proper Diet, danger signs, supportive care , follow up etc.
 - Multidisciplinary Approach: most beneficial
 - post-intensive care unit patients.

Respiratory Hygiene and Cough Etiquette

Cover your mouth and nose with a tissue when coughing or sneezing

Dispose of the tissue afterwards

After coughing

or sneezing, wash

your hands with

soap and water

Wear a mask if you are coughing or sneezing

Monitoring

. Chest X-ray :All cases of Severe pneumonia, non improving or Diagnostic dilemmna

Blood investigations (CRP, TLC, procalcitonin/ blood culture)
Do not reliably differentiate bacterial vs. viral

For detection of viruses: Polymerase chain reaction (PCR): may be useful
Interpreted with caution, as healthy or in URTI may have positive. Availability and cost

Chest ultrasound :emerging POC test

CHEST CT : NO ROUTINE USE : Suppurative parenchymal complication: abscess/ necrotizing pneumonia/ necrosis, Pleural complications, Diagnostic dilemma

Case

- 7 yr old Rakesh treated for pneumonia in a district hospital for 10 days with oral antibiotics brought with persistent fever and increasing Respiratory distress
- H/o Lt sided chest pain , dull note and absent breath sounds in Lt infarscapular area.
- Diagnosis ? Drugs of choice ? Duration of therapy ?

- Lt Empyema
- Parenteral
- Cefotaxime or Ceftriaxone plus Clinadamycin

Non-Response to Initial Empirical Therapy

??Complications

F

Empyema Abscess

??Different pathogen

Mycobacterium tuberculosis Mycoplasma COVID 19 ??Drug resistance
B lactam producing
Hib, Drug resistant
staph aureus
including community
acq methicillin
resistance

Highest risk factors for childhood Pneumonia deaths in India :2017

PROTECT, PREVENT AND TREAT

Prevention of Pneumonia

Childhood immunization (DPT, Hib, PCV, Measles, Influenza)

Nutrition

(Breastfeeding, vitamin (A & D) and mineral (Zinc) supplementatio

n

It has been estimated that if PCV13 coverage in lowincome countries would reach the coverage of the DTP3 vaccine, then it could prevent 399,000 child deaths and 54.6 million pneumonia episodes annually

Maternal immunization (Influenza, Pertussis)

Pneumonia still highest cause of U5 mortality Globally and India

SEVERE PNEUMONIA:EARLY RECOGNIZION/ APPROPRIATE ANTIBIOTICS/ PULSE OXIMETRY/OXYGEN THERAPY

Non responsive pneumonia: Think COMPLICATIONS!!!

After malnutrition growing pollution (indoor &outdoor): Risk factor

IMPACT OF AIR POLLUTION ON CHILDREN

Dr. Harshal Ramesh Salve

MBBS, MD, FIPHA Additional Professor Centre for Community Medicine All India Institute of Medical Sciences, New Delhi Co-ordinator CAPHER India Email: harshalsalve@aiims.edu

E-Connect Seriese - MOHFW - January 202

Why Environmental health?

Burden of disease attributed environmental exposure

24% of diseases and 23% of mortality globally

CAPHER-India

E-Connect Seriese - MOHFW - January 2025
Levels of Environmental Risks

Level 0	Level 1	Level 2	Level 3	Level 4
		Unsafe water, sanitation, and handwashing	Unsafe water source	
			Unsafe sanitation	
	ental/ al risks		No handwashing with soap	
		Air pollution	Particulate matter pollution	Ambient particulate matter pollution
				Household air pollution from solid fuels
			Ambient ozone pollution	
	Ĕ Ğ	Other environmental risks	Residential radon	
	Environ occupatio		Lead exposure	
		Occupational risks	Occupational carcinogens	
			Occupational asthmagens	
			Occupational particulate matter, gases, and fumes	
			Occupational noise	
			Occupational injuries	
			Occupational ergonomic factors	

Global Burden of Disease Study (GBD) risk factor hierarchy (adapted from Stanaway et al. 2018).

WHO Air Quality Standards - 2021

Pollutant	Averaging time	2005 AQGs	2021 AQG level
DM ug/m ³	Annual	10	5
ΡΙνί2.5, μβ/11	24-hour ^a	25	15
DNA	Annual	20	15
Ρινι ₁₀ , μg/ m	24-hour ^a	50	45
0. ug/m³	Peak season ^b	-	60
O ₃ , μg/ m	8-hour ^a	100	100
NO us/m3	Annual	40	10
NO ₂ , μg/m	24-hour ^a	-	25
SO₂, μg/m³	24-hour ^a	20	40
CO, mg/m ³	24-hour ^a	-	4

Revision of NAAQ Standards are in process

National Ambient Air Quality Standards (2009)

		Time Weighted Average	Concentration in Ambient Air	
Sr. No	Pollutants		Industrial, Residential, Rural, and Other Areas	Ecologically Sensitive Area
1	Sulphur dioxide (SO ₂),	Annual*	50	20
	µg/m³	24 hours**	80	80
2	Nitrogen dioxide (NO ₂),	Annual*	40	30
	µg/m³	24 hours**	80	80
3	Particulate matter	Annual*	60	60
	(Size <10 μ m) or PM ₁₀ μ g/m ³	24 hours**	100	100
4	Particulate matter	Annual*	40	40
	(Size<2.5 μm) or PM _{2.5} μg/m ³	24 hours**	60	60
5	Ozone (O,), µg/m³	8 hours**	100	100
		1 hours **	180	180
6	Lead (Pb), µg/m ³	Annual*	0.50	0.50
		24 hours**	1.0	1.0
7	Carbon monoxide (CO),	8 hours**	02	02
	mg/m ³	1 hours **	04	04
8	Ammonia (NH ₃), µg/m ³	Annual*	100	100
		24 hours**	400	400
9	Benzene (C6 H6) , µg/m ³	Annual*	05	05
10	Benzo(a) pyrene (BaP)- particulate phase only, ng/m ³	Annual*	01	01
11	Arsenic (As), ng/m ³	Annual*	06	06
12	Nickel (Ni), ng/m ³	Annual*	20	20

Ecologically sensitive areas:

Areas in which developmental activities is prohibited. Eg:-Murud-Janjira , Dahanu, Mahabaleshwar-Panchgani, Sultanpur etc.

MAJOR AIR POLLUTANTS

	Classification	Examples	
Based on source of origin	Natural air pollutants	dust, sea-salt, forest fires	
	Anthropogenic air pollutants	stationary point sources, mobile sources, waste disposal landfills, controlled burning etc	
Based on method of origin	Primary air pollutants	Sulphur dioxide (SO ₂), Carbon monoxide (CO Lead (Pb), Ammonia (NH ₃)	
	Secondary air pollutants	Ozone , Nitrogen dioxide (NO₂) , Photochemical smog	
Based on chemical	Gaseous air pollutants	SO_2 , NO_X , O_3 , CO	
composition	Particulate air pollutants	PM10, PM2.5, PM1	
CAPHER-India	(

Why there is need to take the action on Air Pollution effects?

Responsible for One in every eight death in India ¹ Second most common leading risk factor (DALY) in India²

99% of India's population

exposed to more than

recommended (10 µg/m³)

1. India State-Level Disease Burden Initiative Collaborators Nations within a nation: variations

in epidemiological transition across the states of India, 1990-2016 in the Global Burden of Disease Study, Lancet. 2017 Dec 2;390(10111):2437-2460. doi: 10.1016/S0140-6736(17)32804-0. Epub 2017. 14

2. Gorai AK, Tchounwou PB, Biswal SS, Tuluri F.Spatio-Temporal Variation of Particulate Matter(PM_{2.5}) Concentrations and Its Health Impacts in a Mega City, Delhi in India.Environ Health Insights. 2018 Aug 19; 12:1178630218792861. doi: 10.1177/1178630218792861. eCollection 2018 Ai S, Qian ZM, Guo Y, Yang Y, Rolling CA, Liu E, et al Long-term exposure to ambient fine particles associated with asthma: A cross-sectional study among older adults in six low- and middle-income countries.

Environ Res. 2019 Jan; 168:141-145. doi: 10.1016/j.envres.2018.09.028. Epub 2018 Sep 24.

hyaz A, Dey S, Chowdhury S, Goyal P. Expected health benefits from mitigation of emissions from major anthropogenic PM2.5 sources in India: Statistics at state level. Environ Pollut. 2018 Nov;242(Pt B):1817-1826. doi: 10.1016/j.envpol.2018.07.085. Epub 2018 Jul 24

Variety of impacts

Source: https://www.epa.gov/benmap/how-benmapce-estimates-health-and-economic-effects-air-polit

Air Pollution and Child mortality

2nd leading risk factor for deaths in children under 14 years

16% of all deaths in children

CAPHER-India

Pandey, A, Michael Brauer, Maureen L. Cropper, Kalpana Balakrishnan, Prashant Mathur, Sagnik Dey, Burak Turkgulu, et al. . Health and Economic Impact of Air Pollution in the States of India: The Global Burden of Disease Study 2019. The Lancet Planetary Health. 2021,5 (1): e25–38. https://doi.org/10.1016/S2542-5196(20)30298-9.

Air Pollution and Child mortality

Figure 2: Percentage of LRIs linked to ambient air pollution (purple) and household air pollution (green) since 1990

State wise and urban/rural disparity exists

Exposure of Air Pollution in Intra – Uterine life

- Low birth weight and preterm birth are leading risk factors for death in the first month of life.
- India ->exposure to air pollution was linked to the deaths of 116,000 infants within the first month of being born.
- Archana Patel et al (2015) increased risk of perinatal mortality among households using polluting fuels (adjusted relative risk (aRR) 1.44, 95 % CI 1.30-1.61)
- A study in Chennai, that a 10 µg/m³ increase during pregnancy was associated with a 4 g (95% CI:1.08 g, 6.76 g) decrease in birth-weight

Ghosh R, Causey K, Burkart K, Wozniak S, Cohen A, Brauer M. Ambient and household PM2. 5 pollution and adverse perinatal outcomes: A meta-regression and analysis of attributable global burden for 204 countries and territories. PLoS medicine. 2021 Sep 28;18(9):e1003718.

Balakrishnan K, Ghosh S, Thangavel G, Sambandam S, Mukhopadhyay K, Puttaswamy N, Sadasivam A, Ramaswamy P, Johnson P, Kuppuswamy R, Natesan D. Exposures to fine particulate matter (PM2. 5) and birthweight in a rural-urban, mother-child cohort in Tamil Nadu, India. Environmental research. 2018 Feb 1;161:524-31.

Patel AB, Meleth S, Pasha O, Goudar SS, Esamai F, Garces AL, Chomba E, McClure EM, Wright LL, Koso-Thomas M, Moore JL, Saleem S, Liechty EA, Goldenberg RL, Derman RJ, Hambidge KM, Carlo WA, Hibberd PL. Impact of exposure to cooking fuels on stillbirths, perinatal, very early and late neonatal mortality - a multicenter prospective cohort study in rural communities in India, Pakistan, Kenya, Zambia and Guatemala. Matern Health Neonatol Perinatol. 2015 Jul 21;1:18.

Exposure of air pollution during childhood

Figure 3:: Distribution of lower respiratory infection (LRI) deaths in 2019 linked to PM2.5 and household air pollution, by age (years, except early neonatal [0 to 6 days] and late neonatal [7 to 27 days]).

- Exposure to air pollution reduce lung function among children
- Continuous exposure to (PM10, PM2.5 nitrogen dioxide) can cause respiratory infections among children

Exposure of air pollution during childhood

• Short term exposure

- Ear, nose, and throat irritation
- Aggravated conditions such as allergies and asthma
- Eczema

CAPHER-India

• Long term exposure

- New cases of childhood asthma
- Increase the risk of developing chronic respiratory diseases such as COPD during adulthood
- Childhood anaemia
- Allergic rhinitis
- Neurodevelopmental outcomes
- Stunting in children

Salvi SS, Kumar A, Puri H, Bishnoi S, Asaf BB, Ghorpade D, Madas S, Agrawal A, Kumar A. Association between air pollution, body mass index, respiratory symptoms, and asthma among adolescent school children living in Delhi, India. Lung India. 2021 Sep-Oct;38(5):408-415. doi: 10.4103/lungindia_955_20. PMID: 34472517; PMCID: PMC8509169.

Determinants of the health impacts related to air pollution in children

Recommendations

Addreesing Air Pollution and NCDs

Domains for Action

AIIMS - IIT Delhi collaboration – Capitalizing on strengths

Strengths

CAPHER-India

- Epidemiology
- Medical Sciences
- Running Cohort
- Network development

Strengths

- Exposure measurement
- Technology use and GIS
- Modeling

Institutional mechanism is key for sustainability

AIIMS – IIT Study at Ballabgarh

Mortality burden of ambient PM_{2.5} exposure in Delhi NCR

(CCM, AIIMS – IIT Delhi Joint Project)

Objectives

Development of a mortality model by collating cause-specific mortality data and generating high-resolution PM_{2.5} exposure data for Delhi NCR

Estimate mortality burden due to shortterm exposure to ambient PM_{2.5} in Delhi NCR

	IRR	p-value	95% Confidence Interval	
Total deaths	1.105	0.000	1.068	1.144
Respiratory Diseases	1.026	0.353	.971	1.085
CVD	1.043	0.127	.988	1.102

PI - Harshal Ramesh Salve (AIIMS) – Sagnik Dey (IIT D) Arti**cle Under Peer revie**w. PI do not quote E-Connect Seriese - MOHFW - January 2025

PM 2.5 Exposure and OPD consultation for Cardio-respiratory illness – CRHSP Ballabgarh

PM 2.5 (7 day Lag) IRR – 1.02 (1.01 – 1.04)

Sources of Air Pollution data

- Reference-grade monitoring network (PM_{2.5}, PM₁₀, SO₂, NO₂, O₃, Benzene, CO, etc.); expected to double by 2024 under the National Clean Air Programme (NCAP)
- Satellite-based PM_{2.5} database at 1 km (other pollutants: NO₂, SO₂, O₃ etc.)
- Other networks like BC from IMD and ISRO; MAPAN and SAFAR networks
- Personal exposure monitoring in indoor microenvironments from past and existing cohorts

CAPHER-India

Sources of Air Pollution data

https://cpcb.nic.in

Collaborative for Air Pollution and Health Effects Research-India

Objectives

- To build partnerships among research institutions to develop and implement research studies on health effects of air pollution
- To facilitate development of collaborative research proposals to fill critical evidence gaps
- To conduct capacity building exercises/programs targeted at early career researchers

Capher-India: Steering Committee

Dr. Anand Krishnan All India Institute of Medical Sciences New Delhi

Dr. Kalpana Balakrishnan Shri Ramchandra Institute of Higher Education and Research Chennai

Dr. Santu Ghosh St John Medical College, Bengaluru

CAPHER Aparajita Chattopadhyay Indian Institute of Population Sciences, Mumbai IDP Climate Studies, IIT Bombay

Capher-India: Secretariat

Dr. Harshal Ramesh Salve, AllMS New Delhi

Dr. Sagnik Dey, IIT Delhi

Dr. Surbhi Kapoor Research Scientist, AlIMS New Delhi

Secretariat office: #40, Centre for Community Medicine, old OT Block, All India Institute of Medical Sciences, Ansari Nagar New Delhi-110029 Email: <u>capherindia@gmail.com</u>, Ph: 91-11-26593366

CAPHER – India – Air Health Bulletin

Year 2021 - 22

CAPHER-India

Year 2022 - 23

Year 2023 - 24

CREST PURVIEW

How to join CAPHER – India network

- Find us on Twitter for updates on CAPHER activities and upcoming events
- Write to the secretariat-<u>capherindia@gmail.com</u>
- To join the network, please complete the form -<u>https://tinyurl.com/CAPHERIndia</u>

Funcing Support - Fleighth Effect Patitute (1/EI), Boston USA

E-Connect Seriese - MOHFW - January 2025

DNSULTATION-CUM-WORKSHOP : AIR POLLUTION AND HEALTH IN INDIA-CURRENT EVIDENCE TO INFORM THE INDIA NAAQS REVSION PROCESS

Challenges ahead

Changing priorities of policy makers

Lack of opportunities for integration

Geographically restrictive approach

• Medium, long term goals are missing - Mostly A knee jerk

reaction is observed

Capacity building of Health officials

Centre for Excellence for Cardiopulmonary diseases under NPCCHH

Developed Training manual for State and District level officers in CC and Cardiorespiratory diseases

Actions needed at programme level

National Programme for Climate Change and Human Health (NPCCHH)

E-Connect Seriese - MOHFW - January 2025

CAPHER-India

Specific actions at policy level

- Integration of health and environmental measures policy decisions serve to protect and improve health
- End health harmful subsidies
- Develop healthy and efficient transport options, such as combining rapid transit with walking/cycling
- Invest in health and evidence generation
- Provide safe housing conditions
- Regulate potentially health-harmful industries
- Select energy options, while considering health impacts and their financial implications

Specific actions at individual level

Decongestion of traffic by using Public transport and environment friendly vehicles

Air quality monitoring

Balanced diet with more consumption of fruits and vegetables

Efficient use of energy,

use of clean fuel

Proper waste disposal

Tree Plantation and conservation

The Way Forward

- Continued Knowledge and skill enhancement of the self –
 Contribution in Science by generating local evidence
- Involvement of Medical colleges/ institutions
- Understand and priorities the local environmental risks and community needs
- Strategic communication to the Policy makers
- Strengthening of Programme
- Collaboration and Partnership

Passion, Perseverance and Partnership are essential for essential for advancing science

ogether w Achieve More

THANK - YOU

