# STRATEGIES TO REDUCE Infections in the New Born: Immediately After Birth & in SNCU

Dr Mamta Jajoo Professor Paediatrics NICU In-charge CNBC Delhi

#### Problem?

- Second most Important cause of Death
- Emerging Antimicrobial Resistance
- Emerging Fungal Sepsis
- Prolongs duration of hospitalisation
- Increases treatment Costs, duration of hospital stay
- Difficult to diagnose: Lack of facility for culture
- Overuse of antibiotics

#### **Contributing Factors for Healthcare Associated Infections**

- High patient-to-nurse ratio
- Bed space less than 1 meter (3 feet) apart
- Low compliance with hand hygiene practices
- Limited resources for isolation or cohorting
- Increasing use of complex medical, surgical procedures

- Increasing use of invasive medical devices (e.g., mechanical ventilators, central intravenous lines)
- Inadvertent contamination of prepared supplies/pharmaceuticals (e.g. IV fluid, infant formula, medications)
- Suboptimal cleaning, disinfection, and sterilization practices
- Antibiotic resistance due to overuse of broadspectrum antibiotics

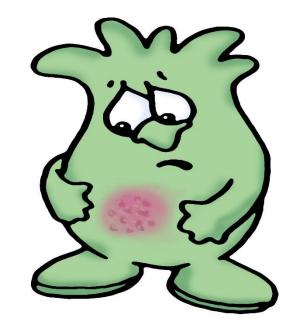
Ref: Allegranzi et al. 2011

In NICU, we handle the tiniest of babies, who are sickest of all.....



# A <u>clean, hygienic environment</u> is the <u>fundamental</u> need for their intact survival.

We achieve this through some strict policies, and good practices...


## HCAI / Nosocomial Infections

• Infections acquired during the process of receiving inpatient health care.



## What are HCAIs in NICU

- CLABSI (Central line associated blood stream infections
- VAP (Ventilator Associated Pneumonia
- CAUTI: Catheter associated UTI
- SSI: Surgical Site Infections

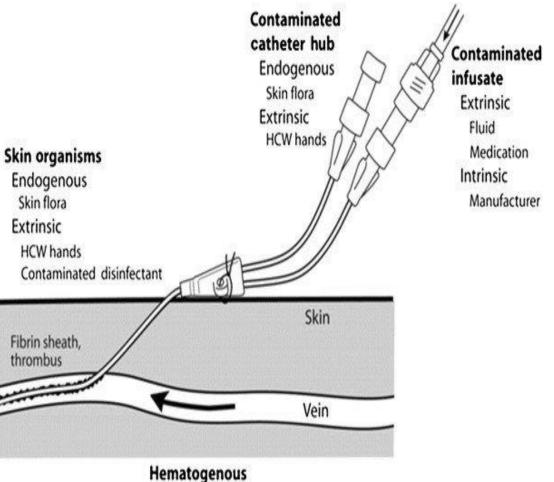


#### CLABSI



CLABSI is defined as a LCBI (Laboratory confirmed blood stream infection)

- 1. Primary infection in patient with central catheter.
- 2. Central line for more than two calendar days on the date of the event, with day of device placement being day one, and the line was also in place on the date of the event or the day before.
- 3. Bloodstream infection (BSI) cannot be attributable to an infection at another site


Ref: CDC/NHSN

## CLABSI

- Most common HCAI
- Incidence 3.2 to 21.8 per 1000 central venous catheter days.
- $\bullet$  Mortality rate due to CLABSI between 4 to 20%
- More in developing world
- Hightower HB et al. Reduction of central line–associated bloodstream infections in a tertiary neonatal intensive care unit through simulation education. Pediatr Qual Saf. 2022;7(6):e610.

## Pathogenesis of CLABSI

- Multiple entry points : through skin :
- Endogenous skin flora
- Extrinsic organisms from environment. through hands
- At Initial catheter insertion
- Colonization and infected from poor hub care
- Contamination of IV fluids or drugs.
- Hematogenous dissemination of bacteria from a distal site.



from distant infection

#### **Risk Factors**

- Low Birth weight.
- Prematurity

Impaired innate immune responses & neutrophil functions Relative deficiencies in complements, immunoglobulin. Lack of maternally derived opsonic antibodies

- Independent risk factors: need for TPN, Use of millilumen catheters.
- Number of central catheter days (odds increases 20 fold with more than 21 days)
- Length of stay more than 12 days
- Blood transfusion
- Postnatal growth failure
- GI conditions: Abdominal surgery, bowel obstructions, dysmotility, ischemic reperfusion injuries.

## Microbiology:

Coagulase-negative staphylococci is the most common.

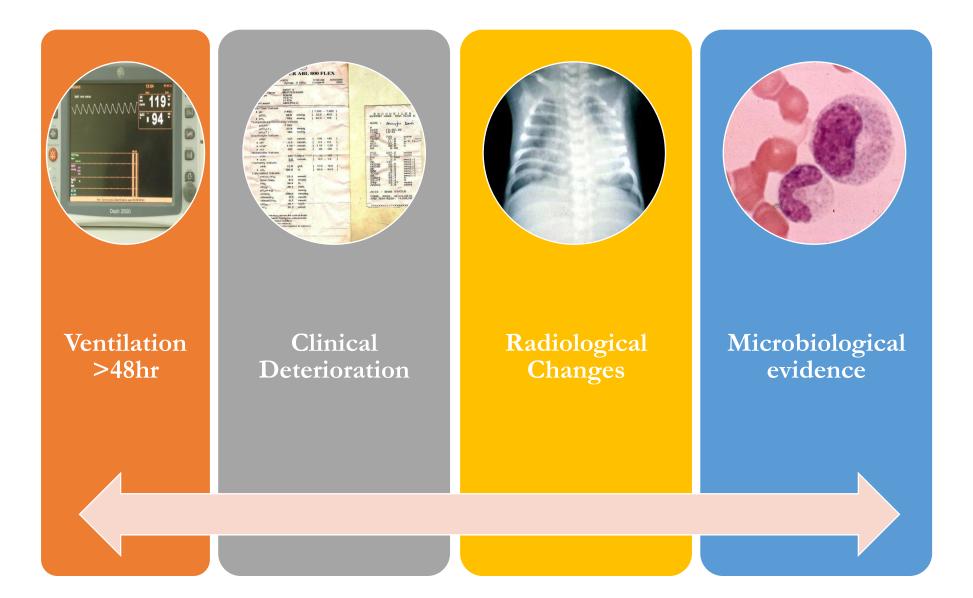
MSSA, methicillin-resistant Saureus, enterococci: gram-positive, polysaccharide encapsulated organisms produces adhesins, biofilm, and slime that promote adherence to catheter surfaces.

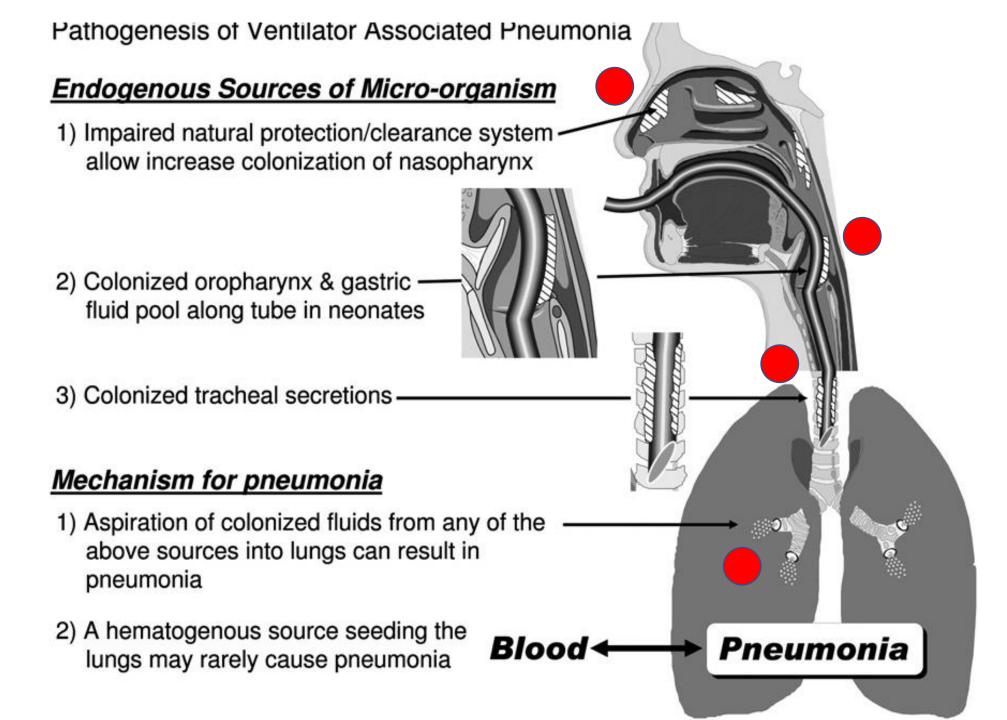
Fungal : Broad-spectrum antibiotic exposures, prolonged NPO, and use of histamine2blocking medications: increases Candida albicans and Candida parapsilosis), Also exploit poor host immune defenses and biofilm production to cause CLABSIs.

-Gram-negative organisms (Escherichia coli and Klebsiella species predominate.

## VAP : Ventilator Associated Pneumonia

- 2<sup>nd</sup> commonest HCAI in neonates
- the incidence ranges from 0 to 37 per 1,000 ventilator days


Developed (UMIC): 2.7 – 10.9 / 1000 VD


Developing (LMIC) : up to 37 /1000 VD

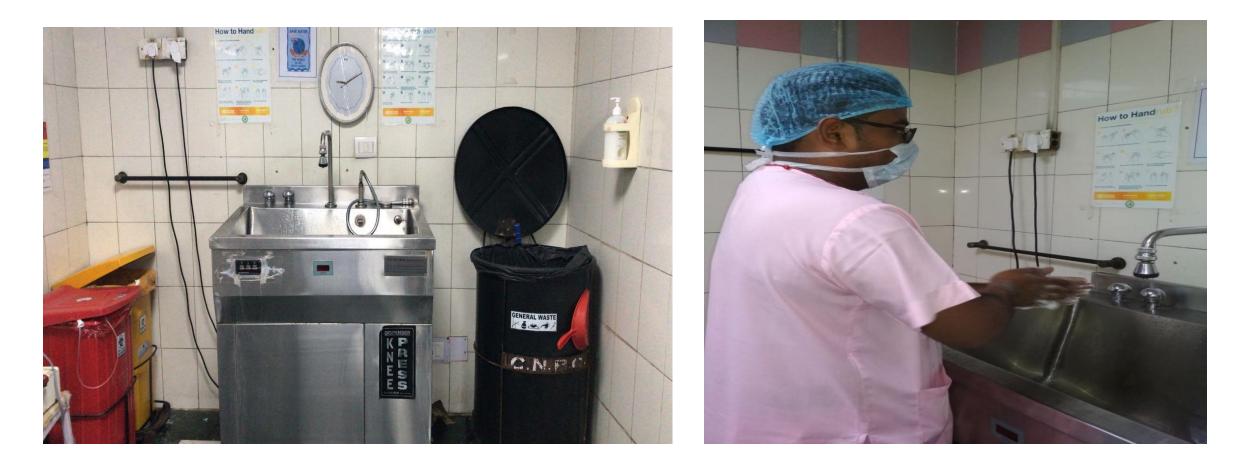
- VAP : HCAI in mechanically ventilated neonates
- that develops more than 48 hrs after initiation of MV



#### **Definite VAP**






## IPC during delivery & after birth

- Strict asepsis & Hand hygiene in the labour room
- Delivery over mothers abdomen
- Initiate early breast feeding within 1 hour
- Encourage exclusive breastfeeding.
- Apply relevant IPC precautions (Transmission-Based Precautions and prophylaxis) to those who are exposed or infected during or before birth (e.g., congenital syphilis, rubella, HIV, HBV, and other infectious diseases).
- Encourage exclusive breast feeding.
- Eye care : with sterile swab : single use for each eye
- Cord Care: Keep it dry and open
- Don't apply anything
- Administer Vit K and Birth immunization using safe injection practices.

#### Hand Hygiene

- Most Effective, Low cost
- Hand washing: (remove jewellery, e.g. rings). All jewellery and ornaments like bangles, watches, and rings must be removed
- At the time of entry
- Whenever hands are soiled

#### **Infection Control Practices**



#### HAND HYGIENE : LOW COST, MOST EFFECTIVE METHOD TO PREVENT INFECTIONS.

Remember SUIMAN

#### WHO recommended 6 steps of Hand hygiene: SUIMAN



Broad Spectrum Antimicrobial

Surgical Hand Scrub-4% CHG Chlorhexidine Gluconate Solution I.P. 20 6 v/v

- Bactericidal 
   Sporicidal
- Fungicidal
   Virucidal

Use this solution: In Wards ICU Nursing homes

Aseptic Hand wash



Patient Safety

SAVE LIVES Clean Your Hands

## **How to Handwash?**

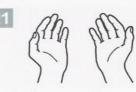
ANDS WHEN VISIBLY SOILED! OTHERWISE, USE HANDRUB

Duration of the entire procedure: 40-60 seconds



Wet hands with water;






Rub hands palm to palm;

Backs of fingers to opposing palms with fingers interlocked;



Rinse hands with water:



Your hands are now safe.







Rotational rubbing of left thumb clasped in right palm and vice versa;



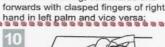
Dry hands thoroughly with a single use towel



Apply enough soap to cover

all hand surfaces:



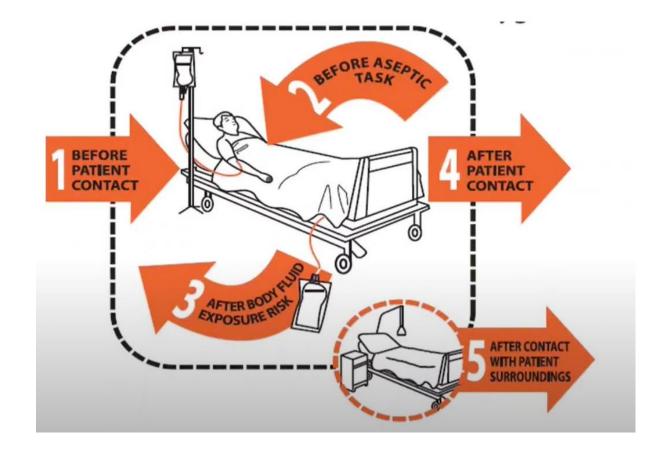









Use towel to turn off faucet:








Rotational rubbing, backwards and

#### **5 Moments of Hand Hygiene**



#### Hand Rub – provided hands are visibly clean

- 1. Whenever touching any patient esp. in inpatient units and critical care ar eas
- 2. Also, preferred in between infectious OPD patients.
- 3. After handling any potentially infectious object
- 4. In high dependency areas and after attending patients in isolation or with known transmissible condition

Dispense the required amount of solution onto the hands. Ensure solution covers all hand surfaces. Rub vigorously, using hand washing technique, until dry.



#### How to use Hand rub



|  | Hand | l rul | 0 |
|--|------|-------|---|
|--|------|-------|---|

| Hand Hygiene    | Recommended |
|-----------------|-------------|
|                 | time        |
| Hand rub        | 20-30 sec   |
| (Alcohol-Based  |             |
| Formulation)    |             |
| Hand wash (soap | 40-60 sec   |
| and water)      |             |
| Surgical scrub  | 2-6 minutes |
|                 |             |

Use an alcohol-based hand rub

0.5% chlorhexidine + 70% w/v ethanol

Chlorhexidine and alcohol is ideal as they cover Gram-positive and Gram-negative organisms, viruses, mycobacteria and fungi. Chlorhexidine also has residual activity

## Easily Available & Accessible

#### Hand Rub



# Hand Hygiene & Glove use

- Use of gloves does not replace hand washing
- Wear gloves after proper hand hygiene
- Wear gloves only when Indicated
- Other aspects of hand hygiene Avoid jewellery, wrist watches
- No artificial finger nails, nail polish
- Keep natural nails short
- Cover cuts/abrasions with waterproof dressing
- Hand Hygiene promotion programs
- Address behaviour and attitude of health workers
- Monitor hand hygiene and provide performance feedback

#### Hand hygiene – by all staff and attendants







# Hand Hygiene

# Remember: everything you touch has been touched by someone else



#### You must perform hand hygiene to:

- Protect the patient against harmful germs carried on your hands or present on his/her own skin
- 2. Protect yourself and the healthcare environment from harmful germs

## **Education Training and motivation**

- Monitor healthcare workers adherence with recommended hand hygiene practices and give feedback
- Implement behavioural approaches to identify barriers and facilitators to improve handwashing rates.
- Implement a multidisciplinary program to improve adherence to recommended practices
- Provide training to new or transferred in staff on hand hygiene and IPC protocols
- Encourage patients and their families to remind health care workers to practice hand hygiene

## Good practices – leading to clean environment & asepsis



#### Equipment and Environment

## Intensification of house keeping & disinfection routines

- Floors: 5% Phenyl, wet mopping; each shift
- Walls: 2% Bacillocid; each shift
- Window AC: surface & filter washed once a wk
- Refrigerator: defrost & clean with soap once a wk
- Bucket & sink: soap/ detergent daily
- Mop head: washed in soap & water, disinfect with hypochlorite (1%) for 30m, dry in sunlight; daily
- Baby's linen, blanket: autoclave
- Feeding utensils/ paladi: wash, boil 10m/ hot oven before each use
- Swab container, injection/medicine tray, set for procedures, cheattle forceps, steel drums= autoclave

## Strengthening of Disinfection & Sterilization of equipment

- Cidex/ Plasma Sterilization: Resuscitation bag, reservoir, O2 mask, vent tubing, bottle and tubing of suction machine
- 2%Bacillocid: Weighing machine, warmer, incubator
- Spirit/ 70% alcohol: Laryngoscope blade, thermometer, probe, BP cuff, measuring tape, steth
- Syringe pump: soap&water, cidex if blood stained
- O2 hood: soap & water



# **Adherence to Aseptic Protocols**

- Preparation of cot
- Weight recording/ Temp/ spo2 recording
- Feeding, suctioning
- Changing wet nappies
- Preparing & administering injection
- Heel prick, blood sampling, putting IV line, LP
- Maintaining asepsis at IV lines
- Any other invasive procedures
- Visitors, attendants and vendors protocols
- Bundle care

#### Daily Mopping Of Walls





#### Daily Cleaning Of Patient's Bed



#### Floor Cleaning



#### **Equipment Cleaning**

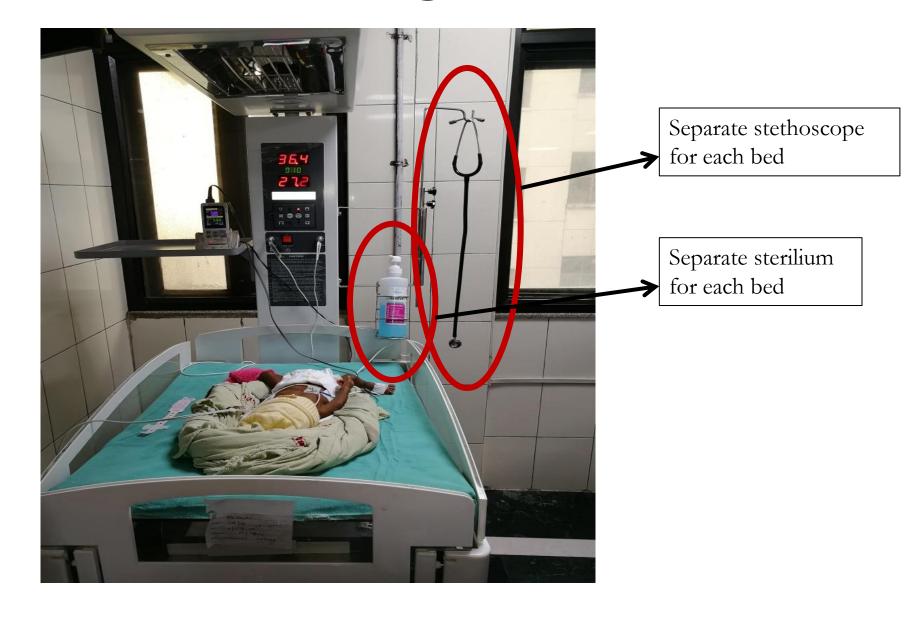


#### Clean Bedding & Nesting



### Sterile Equipment For Emergency Use




### Daily Change Of Water In Humidifiers (With Date)



### **Clean Patient Bed**



## **Clean Patient Surroundings**



# Clean Dressing Trolley & IV Line Tray





|   | Name                                                | Disinfection                                | Frequency & other<br>considerations                              | To be<br>done by |
|---|-----------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|------------------|
| 1 | Baby linen, blanket cover                           | Wash and autoclave                          | Use autoclaved linen each time.                                  | Nurse            |
| 2 | Cotton gauze                                        | Autoclave                                   | As required.                                                     | Nurse            |
| 3 | Feeding utensils<br>(paladai, <u>katori,spoon</u> ) | Wash with soap water and boil for<br>10 min | Before each use.                                                 | Nurse/<br>mother |
| 4 | Swab container, injection<br>tray and medicine tray | Wash with soap water and<br>autoclave       | Daily morning shift,<br>Use separate container for each<br>baby. | Nurse            |
| 5 | Sets for procedures                                 | Autoclave                                   | After each use,<br>Every 72 hours if not used.                   | Nurse            |

|   | Name                                                | Disinfection                             | Frequency & other<br>considerations                              | To be<br>done by |
|---|-----------------------------------------------------|------------------------------------------|------------------------------------------------------------------|------------------|
| 1 | Baby linen, blanket cover                           | Wash and autoclave                       | Use autoclaved linen each time.                                  | Nurse            |
| 2 | Cotton gauze                                        | Autoclave                                | As required.                                                     | Nurse            |
| 3 | Feeding utensils<br>(paladai, <u>katori,spoon</u> ) | Wash with soap water and boil for 10 min | Before each use.                                                 | Nurse/<br>mother |
| 4 | Swab container, injection<br>tray and medicine tray | Wash with soap water and<br>autoclave    | Daily morning shift,<br>Use separate container for each<br>baby. | Nurse            |
| 5 | Sets for procedures                                 | Autoclave                                | After each use,<br>Every 72 hours if not used.                   | Nurse            |

| 6 | Cheattle forceps                                                                    | Autoclave                                                                                                                           | Daily.<br>Put in sterile autoclaved bottle<br>containing dry sterile cotton.                                                                                                                                                                        | Nurse |
|---|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7 | Stethoscope, tape, pulse<br>oximeter probe, radiant<br>warmer probe,<br>thermometer | Clean with spirit cotton.<br>Clean with 0.5% bacillocid at<br>terminal cleaning                                                     | Daily before use.                                                                                                                                                                                                                                   | Nurse |
| 8 | Laryngoscope                                                                        | Clean with spirit swabs daily and<br>after each use for the same baby,<br>Wrap in autoclaved cloth and write<br>date and time on it | Wash with soap water,<br>Put the blade in 2%<br>glutaraldehyde after removing<br>bulb and wash thoroughly after<br>removing from it.<br>Time of contact (Use in between<br>babies):<br>For sterilization: 4-6 hours<br>For disinfection: 15-20 mins | Nurse |

| 10 | Resuscitation bag,<br>reservoirs, oxygen tubing,<br>suction jar and tubing | Clean with soap water after<br>dismantling.<br>Immerse in cidex for 4-6 hours.<br>Rinse in distilled water. Dry and<br>wrap in autoclaved linen. Write date<br>over it<br>Add 5-10 ml of <u>Ashaguart after</u><br>cleaning into the suction bottle | Weekly for resuscitation bag and<br>reservoir.<br>Weekly autoclaving for suction<br>jars<br>Daily for others (night shift). |       |
|----|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|
| 11 | Weighing machine                                                           | Wipe with surface disinfectant<br>( <u>bacillocid(</u> 0.5%)/ spirit before each<br>use                                                                                                                                                             | Daily in morning shift and when required.                                                                                   | Nurse |
| 12 | Infusion pumps and<br>Monitors                                             | Clean with bacillocid. If blood<br>stained clean with soap and water                                                                                                                                                                                | Daily in morning shift.<br>If possible in each shift                                                                        | Aide  |
| 13 | Oxygen hood                                                                | Wash with soap and water, dry with<br>clean linen                                                                                                                                                                                                   | Daily in night shift.                                                                                                       | Aide  |
| 14 | Radiant warmer and incubator                                               | Clean with 0.5% bacillocid daily if<br>occupied.<br>If not occupied clean with 2%<br>bacillocid.<br>If culture positive sepsis, clean with<br>10% bacillocid                                                                                        | Daily in morning shift.                                                                                                     | Nurse |

### **Changing Of Tubings**

- Oxygen humidifier container Q 24 hrs
- Suction bottle cleaned Q 24 hrs
- Suction tubing changed Q 24 hrs
- IV sets/ Dorsifix Q24-48 hrs
- Syringes for use in infusion pump Q 24-48 hrs
- Blood set single use
- IV cannulas single use
- Needles and syringes single use

### **Terminal Cleaning Checklist**

#### TERMINAL CLEANING CHECKLIST BED NO

| SNO | ITEMS                       | EQUIPMENT | CLEANED Y/N | NAME<br>OF<br>THE<br>STAFF |
|-----|-----------------------------|-----------|-------------|----------------------------|
| 1   | RADIANT<br>WARMER/INCUBATOR |           |             | STAFF                      |
|     | PROBE<br>BASE               |           |             |                            |
|     | DRAW                        |           |             |                            |
| 2   |                             |           |             |                            |
| 2   | 1                           |           |             | +                          |
|     | 2                           |           |             |                            |
|     | 3                           |           |             |                            |
| 3   | SYRINGE PUMP                |           |             |                            |
|     | 1                           |           |             |                            |
|     | 2                           |           |             |                            |
|     | 3                           |           |             |                            |
|     | 4                           |           |             |                            |
| 4   | CARDIACMONITOR              |           |             |                            |
|     | SPO2 PROBE                  |           |             |                            |
|     | NBP CABLE                   |           |             |                            |
|     | ECG CABLE                   |           |             |                            |
|     | RECTAL PROBE                |           |             |                            |
| 5   | PULSEOXY                    |           |             |                            |
|     | MASIMO/NELCOR               |           |             |                            |
| 6   | AMBUBAG                     |           |             |                            |

### **Preparation & giving medication**

- Ensure one needle, one syringe, one medication, one patient
- DO NOT change the needle in order to reuse the syringe;
- DO NOT use the same mixing syringe to reconstitute several vials;
- DO NOT combine left over medications for later use.
- Whenever possible, use a single-dose vial for each patient
- DO NOT touch the diaphragm after disinfection with the 60– 70% alcohol (isopropyl alcohol or ethanol).
- DO NOT enter several multi-dose vials with the same needle and syringe.
- Replace fluid bottle/ multidose vial/ infusion set after 24 hr of use

### **Preparation Of IV Medication Under Strict Asepsis In Laminar Flow**



### Administration of Medications with Strict Asepsis



# **Closed IV System**



Minimal handling = minimal infection

### Clean fixation of IV line (with date and time)

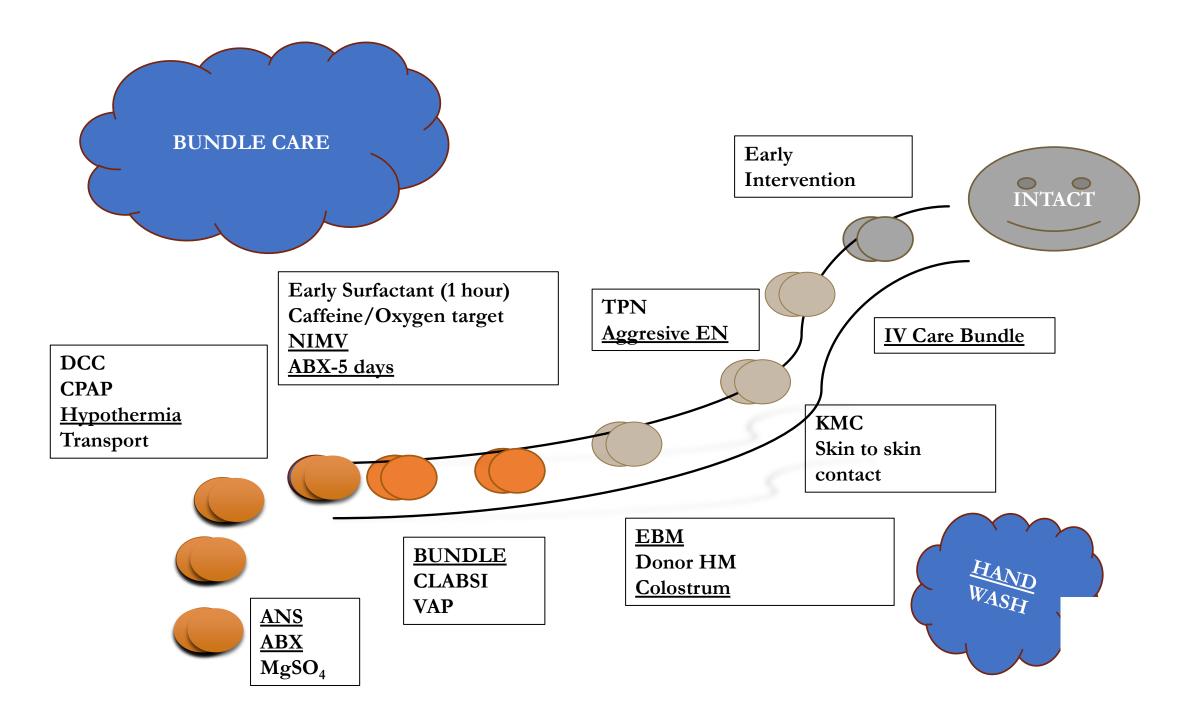


### Clean Fixation Of IV Cannula With Splint And Transparent Dressing



### **Clean IV line Intersections**




### Clean Fixation Of OG Tube



### STRICT ASEPSIS DURING ENDOTRACHEAL SUCTIONNING



3/16/18



### VAP Bundle

- 1. Active surveillance for VAP
- 2. Adherence to hand hygiene guidelines
- 3.Performance of daily assessments of readiness to wean.
- 4.Use of weaning protocols
- 5. Performance of regular oral care with an antiseptic solution
- 6. Use of NIV whenever possible and minimization of the duration of MV

- 7. Preferable use of OT instead of NT intubation
- 8. Removal of the condensate from circuits and keeping the circuit closed during removal
- 9. Change of circuit only when visibly soiled or malfunctioning
- 10. Avoidance of gastric overdistention
- 11. Avoidance of H2RB agents & PPI
- 12. Use of sterile water to rinse reusable respiratory equipment

# Prevention of CLABSI In NICU

- No single intervention
- Bundles : are several EB practices individually proven, When applied together may result in greater improvement in desired outcome.

### **Bundle Interventions for CLABSI**

#### Insertion Bundle

Establish a central catheter kit or cart with all the items required.

Perform hand hygiene with an alcohol-based product or disinfectant containing soap before and after palpating insertion sites and before and after inserting the central catheter

Use maximal barrier precautions sterile gown, sterile gloves, surgical mask, hat, and large sterile drape)

(Disinfect the skin with a proper antiseptic (e.g., 2% chlorhexidine, 70% alcohol) before catheter insertion

Dressings: Use sterile transparent/semipermeable dressing to be change when visibly soiled.



### **Bundle Interventions for CLABSI**

### Maintenance Bundle

Perform hand hygiene with an alcohol-based product or disinfectant containing soap before or after accessing the catheter, or before or after changing the dressing.

Daily check: catheter insertion sites to identify signs of infection and dressing integrity

If the dressing is damp, soiled or loosened, change the dressing aseptically and disinfect the skin around the insertion site (e.g., 2% chlorhexidine, 70% alcohol)

Use the fewest number of ports or lumens.

Maintain aseptic technique and scrub the hub using appropriate disinfectant at least for 15 seconds before and after.

Replace tubing used to administer blood, blood products, or fat emulsions within 24 hours of beginning the infusion

Daily review to remove catheter ASAP.



### Avoid:

- Inline filters: in-line filters are not recommended for use only to prevent CLABSI. No difference in infections.
- Catheter dressing regimen: transparent dressings /Gauze dressing.
- Chlorhexidine-impregnated dressings: Not recommended
- Systemic prophylactic antimicrobials: Not effective.
- Antimicrobial locks: only in neonates with long term catheters with history of multiple CRBSI despite maximum aseptic precautions.
- Chlorhexidine bathing: Lack of evidence
- Avoid use of topical antibiotics or creams.

### **Prevention of Infection**

- Personelle
- Infection Control Practices
- Early interventions and less invasive approach
- Design of NICU
- Education and surveillance
- Antimicrobial Stewardship

### HOW'S BIO-MED WASTE DISPOSED

### YELLOW

Anatomical waste and discarded medicines must be disposed using incineration, plasma pyrolysis or deep-burial

### RED

All contaminated waste should be disposed using autoclaving or microwaving method or using chemical disinfection

### WHITE

Waste sharps including metals should be disposed with sterilization & shredding, disinfection, burial or recycling

### BLUE

Glassware & metallic body implants should be first



ts should be first disinfected using scientific methods before being sent to recycling

## **Bio-medical** waste management



### **Spill management**



### Linen and Laundry management

## Early Aggressive Enteral nutrition

- Remember: Breast milk reduces risk of sepsis and necrotizing enterocolitis in preterm infants
- Immunologic properties of breast milk secretory IgA
- Specific macrophages and lymphocytes
- Secretory molecules with antibacterial properties

BM has prebiotics, and probiotics and has been shown to decrease the incidence of gastrointestinal and respiratory infections in infancy.

Start Enteral nutrition ASAP: specially mothers milk

### **Precautions During Handling Breast Milk**

- Contaminated breast milk pumps and refrigerated storage practices also a source of infection.
- Mothers- ensure hand hygiene and expression of milk into sterile containers.
- Clean the containers with hot, soapy water after each use, before they are sterilized.
- Breast pump : separate consumables for expression for each mother
- Wash all pump components that are in contact with milk with hot, soapy water after each use, dry thoroughly, and store in a clean place.
- Sterilize or high-level disinfect pump components daily.

### **Breast Milk Handling And Storage**

- Store milk in sterile containers covered securely
- Label with infant's name, medical record number, date of birth and date of pumping and time
- On room temperature can be kept for 1 hour
- In refrigerator for 24 hours
- When stored in a refrigerator or freezer with milk for other infants, place all the feeds for each infant into a larger, labelled, cleanable bin or zip-lock bag, one for each infant.
- Use oldest milk first
- Follow the facility's written policy to identify and follow up (create a policy if none exists).

### Family Centred Care

• Mother should be involved in the care of the baby mainly for hygienic care



### Kangaroo mother care: Because a mother's touch is a miracle that never ceases to be miraculous.



### Education



#### Strict hand washing by mothers



#### **Mothers Education**



### **Transmission Based Precautions**

| Precautions |                        | Equipment                              |
|-------------|------------------------|----------------------------------------|
| Standard    | soiling                | gowns                                  |
|             | Contact                | gloves                                 |
|             | Splashing              | mask, eye protection                   |
| Contact     | MDR bacteria           | gloves, gowns                          |
| Droplet     | influenza, pertussis   | gown, gloves, regular surgical<br>mask |
| Airborn     | Varicella, measles, TB | N-95, negative pressure<br>environment |

### Spacing for Facilities with Newborn

| Type of design           | Newborn nursery                                                                                      | Special care unit NICU                                                                                                                                                                                   |
|--------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multi-patient<br>rooms   | <ul> <li>2.2 square meters<br/>per infant</li> <li>1 meter (3 feet)<br/>between bassinets</li> </ul> | <ul> <li>11.2 square meters per infant</li> <li>2.4 meters (8 feet) between incubator<br/>/warmer/bassinet/ crib</li> <li>Aisles &gt; 1.2 meters (4 feet) wide</li> </ul>                                |
| Single patient ro<br>oms | 2.2 square meters, at least 1 m<br>eter (3 feet) in all<br>directions between cribs                  | <ul> <li>&gt; 14 square met &gt; 14 square meters</li> <li>ers</li> <li>•2.4 meter (8 feet) wide aisles</li> <li>•Space should be added for sinks, desks, cabinets, computers, and co rridors</li> </ul> |

## Spacing for Facilities with Newborn

| Type of design                                   | Newborn nursery                                                                                                                                                                   | Special care unit                                                                                              | NICU       |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|
| Handwashing sinks                                | <ul> <li>1 sink for every 6–8 patient</li> <li>A sink in the resuscitation area</li> <li>1 sink per 3–4 patients in a dmission, observation, and continuing care areas</li> </ul> | 1 sink for every 3–4 patie                                                                                     | nts        |
| Air supply                                       |                                                                                                                                                                                   | <ul> <li>Positive pressure to adja</li> <li>90% efficiency filtration</li> <li>6 air exchanges/hour</li> </ul> |            |
| Airborne infection i<br>solation room (AIIR<br>) | Access to at least one AIIR, v                                                                                                                                                    | which may be located on an                                                                                     | other ward |

## Isolation & Cohorting

- Aim: Preventing the horizontal spread of infection from one patient to another. (Gastmeier P. 2004)
- When: Outbreaks
- If infections spread via direct or indirect contact
- If neonates are known or suspected to be colonized or infected with a different pathogen based on clinical diagnosis, microbiologic confirmation or epidemiology
- If neonates are particularly at risk of acquiring a HAI (protective isolation).
- Segregation of Inborn and outborn neonates admitted with infections

### Surveillance of Infection

- Collection of data
- Sharing it with Staff
- Feed back
- Education and training

### **Developmental Supportive Care**



## Some more ....

- Appropriate vaccination of health care workers (eg, influenza vaccine and tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis, adsorbed)
- Visitation guidelines to identify ill/ infected visitors
- Cluster care
- Developmentally supportive care

## Antibiotic Use And Misuse

Judicious use of Antibiotics: Avoid Prophylactic antibiotics

Over reliance of Sepsis screen

- De-escalate therapy once culture reports available
- discontinuing empirical treatment when a bacterial infection has not been identified.
- Use narrowest spectrum on the basis of susceptibility testing.
- Treat for the appropriate duration.
- Curtail the use of third-generation cephalosporins : as produces ESBL producing organisms.
- use other antibiotic agents, such as aminoglycosides for empirical therapy, has been associated with less antibiotic resistance.

## How To Prevent AMR

#### 1. Accurate Diagnosis

- Use Cultures properly, take blood culture before starting antibiotics.
- Facility for automated blood cultures at all centers
- Develop and validate point-of-care diagnostic method(s) for rapid and accurate diagnosis of sepsis
- Interpret Biomarkers wisely

#### 2. Appropriate treatment

- Antimicrobial Stewardship:
- A written antibiotic policy
- Basic principles to use antibiotics
- What to start
- When to escalate/ de escalate
- When to stop

## Antibiotic Stewardship

- Restrict the uses of antibiotics
- Avoid Broad spectrum
- Surveillance & auditing of culture
- Protocol of antibiotic prescription
- Infection control practices

### Antibiotics: Choice of Empirical Antibiotics

- Choice of empirical antibiotics must be based upon local data of etiologic organisms and their antibiograms
- General principles:
  - Avoid third-generation cephalosporins, unless meningitis
  - Try to combine antibiotics with known synergism



- For units without access to local antibiotic data:
  - Where few strains are likely resistant to common antibiotics
    - Septicemia & pneumonia: Ampicillin/cloxacillin + gentamicin/amikacin
    - Meningitis: Ampicillin + cefotaxime
  - Where most strains are likely to be resistant
    - Ciprofloxacin/Piperacillin-Tazobactam + amikacin
    - 2<sup>nd</sup> line: Meropenem (add Vancomycin if MRSA suspected)

## Antibiotics

#### Choice of antibiotics after culture sensitivity report

- If report shows resistance to empirical antibiotics:
  - Neonate not showing satisfactory clinical improvement or worsening of laboratory parameters
    - Upgrade to the simplest and narrowest spectrum sensitive antibiotic
  - If neonate shows clear cut clinical improvement
    - May cautiously continue with empirical antibiotics assuming in vivo sensitivity
    - Avoid resistant antibiotics if CNS or other deep-seated infection
- If the report shows sensitivity to simpler antibiotics
  - De-escalate to narrowest spectrum sensitive antibiotic, even if patient was improving on empiric antibiotics
  - Include duration of sensitive empiric antibiotic therapy while calculating total duration of antibiotics
  - Advantages of de-escalation:
    - Less antimicrobial resistance
    - Lower cost

### **Antibiotics : Duration**

| Diagnosis                                                                            | Duration of antibiotics                        |
|--------------------------------------------------------------------------------------|------------------------------------------------|
| Suspected sepsis, subsequent clinical course and biomarkers not suggestive of sepsis | Stop as soon as blood culture reported sterile |
| Culture-negative probable sepsis                                                     | 5-7 days                                       |
| Culture-positive sepsis with no meningitis                                           | 14 days                                        |
| Meningitis                                                                           | 21 days                                        |
| Ventriculitis                                                                        | 4-6 weeks                                      |
| Bone and joint infections                                                            | 4-6 weeks                                      |
| Deep-seated abscesses                                                                | 4-6 weeks                                      |
| Most of the above durations of antibiotic                                            | cs are not based on strong                     |
| evidence, and have come into clinical                                                | practice by convention                         |

## **Restrict Uses of Broad Spectrum**

- Cephalosporin- Never 1<sup>st</sup> line
- Stop broad spectrum once culture available
- Downgrade once culture available
- Rotation of antibiotics (Gentamicin)

## **Protocol of ABX Prescription**

- Unit protocol
- Maximum of 4-5 antibiotics
- Document change of antibiotics
- Blood culture before change

### **Protocol of ABX Prescription**

Minimize Duration of antibiotics

7-10 days in culture positive

5-7 days in pneumonia/screen positive

3 days or less in suspect sepsis

Protocol on upgarading of antibiotics

Microbiologist/Pharmacist/Form – Mero/Colistin Unit protocol

Document change of antibiotics

Blood culture before change

## **Key Messages**

- The incidence of neonatal sepsis in South Asia is 4 to 10 times higher than that in developed countries
- Simple, evidence based interventions can help, such as better asepsis, hand hygiene, and exclusive breastfeeding and establishing antimicrobial stewardship programmes
- Implementation research—quality improvement initiatives—to scale up the coverage of known interventions
- Identify the source of infection and transmission pathways of common pathogens
- Evaluate the impact of introducing antimicrobial stewardship programmes at different levels of health facilities

## Alone we can do so little; together we can do so much.





## Battling super bugs in SNCU/NICU: Antimicrobial resistance burden & consequences

Neeraj Gupta

Professor

Department of Neonatology

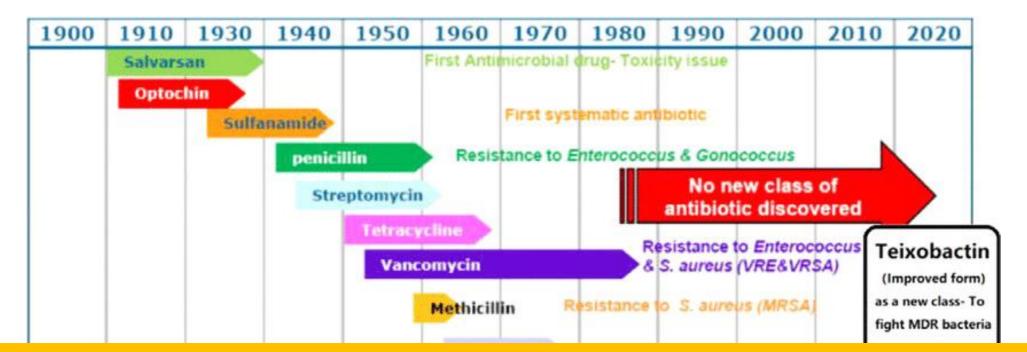
AIIMS, Jodhpur, Rajasthan

neerajpgi@yahoo.co.in

## Antimicrobial agents- Use or Misuse!

• Antimicrobials - Essential life-saving drugs, often prescribed due to

✓ Fear of missing sepsis


✓ Sub-optimal point-of-care diagnostic markers

- However, considered as <u>Ganga Jal-</u>often misused!
- Charting antimicrobials gives pseudo-sense of being secured
- Common misuse
  - Incorrect prescription
  - Overconsumption
  - Prolonged use

Three most common abused drugs in our SNCU/NICU:

Oxygen, <u>antibiotics</u> & intravenous fluids

## Journey: Drug discovery & resistance development



Resistance is a natural evolutionary process, but its progression is accelerated by selective pressure due to excessive use of antibacterial drugs



Ruddaraju LK et al; Asian J Pharm Sci. 2020

## Antibiotics Misuse- A Global Problem

- One of few health issues discussed in WHO Assembly
- Issue discussed in <u>Modi-Obama meeting</u> <u>in 2015</u>

Antimicrobial resistance

Global action plan on antimicrobial resistance

GLOBAL ACTION PLAN ON ANTIMICROBIAL RESISTANCE

At the Sixty-eight World Health Assembly in May 2015, the World Health Assembly endorsed a global action plan to tackle antimicrobial resistance, including antibiotic resistance, the most urgent drug resistance trend.

Global action plan

Global action plan on antimicrobial resistance

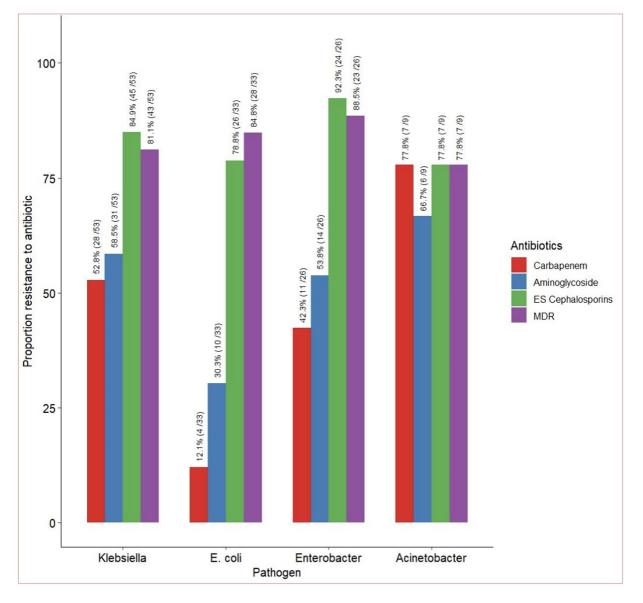
# District Hospital Study: Sepsis burden & multi-drug resistance in SNCUs

- SNCUs- 5 sites across India
- Total infants enrolled: 6612
- Nahta hospital, Balotra
- Culture +ve sepsis: 3.3%
- Culture –ve sepsis: 31.4%

#### **Common organisms**

- Klebsiella spp.
- E.Coli
- Enterobacter
- CONS
- Staph. Aureus
- Acinetobacter spp.

|                                     | Culture-positive<br>sepsis |                   | -negative<br>epsis   | Total sepsis           |
|-------------------------------------|----------------------------|-------------------|----------------------|------------------------|
| Incidence/ prevalence <sup>*</sup>  |                            |                   |                      |                        |
| Overall (n=6612)                    | 215 (3·3; 2·8-3·7)         | 2074 (31.4        | 4; 30·2-32·5) 2      | 2289 (34·6; 33·5-35·8) |
| Site 1 (n=1742)                     | 10 (0·6; 0·3-1·0)          | 454 (26·1         | ; 24·0-28·2)         | 464 (26·6; 24·6-28·8)  |
| Site 2 (n=1358)                     | 136 (10·0; 8·5-11·7)       | 608 <b>(</b> 44·8 | ; 42·1-47·5)         | 744 (54·8; 52·1-57·5)  |
| Site 3 (n=1020)                     | 22 (2·2; 1·4-3·2)          | 407 (39·9         | ; 36·9-43·0)         | 429 (42·1; 39·0-45·2)  |
| Site 4 (n=1100)                     | 34 (3·1; 2·2-4·3)          | 311 (28·3         | ; 25·6-31·0)         | 345 (31·4; 28·6-34·2)  |
| Site 5 (n=1392)                     | 13 (0·9; 0·5-1·6)          | 294 (21·1         | ; 19·0-23·4)         | 307 (22·1; 19·9-24·3)  |
|                                     |                            |                   |                      |                        |
|                                     | Died                       | Survived          | <b>Relative risk</b> | Adjusted relative      |
|                                     | (n=681)                    | (n=5931)          | (95% CI)             | risk* (95% Cl)         |
| No sepsis (n=4323)                  | 185 (4·3)                  | 4138 (95·7)       | -                    | -                      |
| Culture-negative sepsis<br>(n=2074) | 410 (19·8)                 | 1664 (80·2)       | 4·6 (3·9-5·4)        | 3·3 (2·8-4·0)          |
| Culture-positive sepsis<br>(n=215)  | 86 (40·0)                  | 129 (60·0)        | 9.3 (7·5-11·6)       | 5·1 (3·9-6·6)          |
| Data are n (%).                     |                            |                   |                      |                        |


\*Adjusted for birth weight, gestation, major malformations, and whether cried at birth or not.

Under publication

## Antimicrobial resistance (AMR) pattern

Multi-drug resistance (MDR): Gram-negative isolates nonsusceptible to ≥1 agent in ≥3 antimicrobial categories

Multi-drug resistance: 77-89%

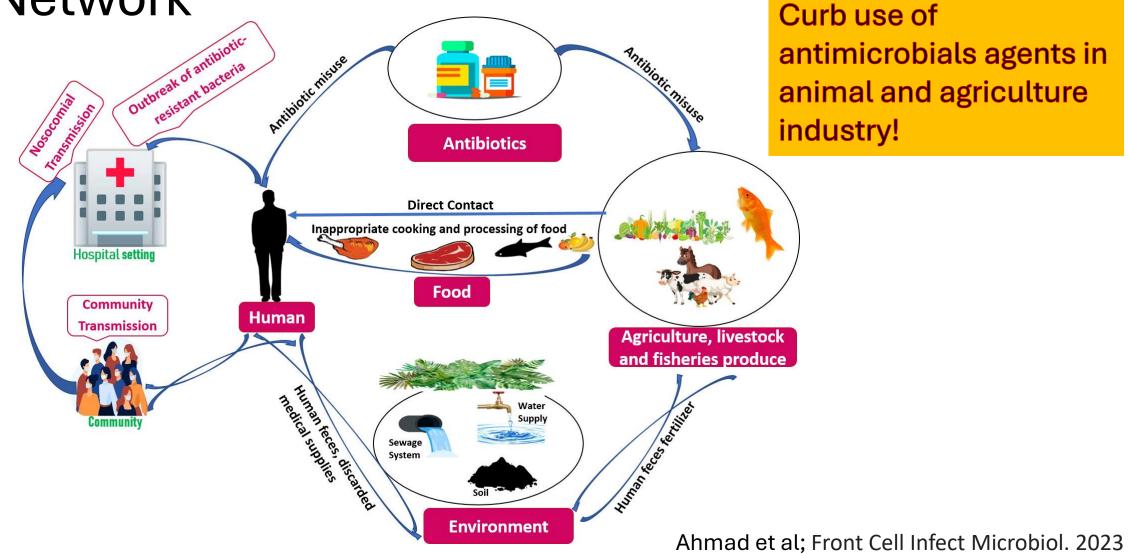


# Delhi Neonatal Infection Study (DeNIS)

- Level III NICU: 4 sites in Delhi from 2011-2014
- Total infants enrolled: 13530 out of 88636
- Incidence
  - ✓ Culture +ve & -ve sepsis: 14.3 (13,8-14.9)
  - ✓ Culture +ve sepsis: 6.2% (5.8-6.6)
- Multi-drug resistance: 40-80%
- Methicillin resistance: 40-80%

#### Lancet Glob Health 2016

|                         | Number of<br>resistant<br>isolates | CFR in culture-<br>positive sepsis<br>due to<br>resistant<br>pathogens | CFR in culture-<br>positive sepsis<br>due to<br>sensitive<br>pathogens |
|-------------------------|------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| Gram negative           |                                    |                                                                        |                                                                        |
| Acinetobacter spp (n=   | 222)                               |                                                                        |                                                                        |
| ES cephalosporins       | 85/222 (38%)                       | 59/85 (69%)                                                            | 71/137 (52%)                                                           |
| Carbapenems             | 174/222 (78%)                      | 106/174 (61%)                                                          | 24/48 (50%)                                                            |
| MDR                     | 181/222 (82%)                      | 112/181 (62%)                                                          | 18/41 (44%)                                                            |
| Klebsiella spp (n=169)  | )                                  |                                                                        |                                                                        |
| ES cephalosporins       | 105/169 (62%)                      | 57/104 (55%)                                                           | 38/65 (58%)                                                            |
| Carbapenems             | 59/169 (35%)                       | 36/59 (61%)                                                            | 59/110 (54%)                                                           |
| MDR                     | 91/169 (54%)                       | 52/91 (57%)                                                            | 43/78 (55%)                                                            |
| Escherichia coli (n=13) | 7)                                 |                                                                        |                                                                        |
| ES cephalosporins       | 65/137 (47%)                       | 40/64 (63%)                                                            | 43/73 (59%)                                                            |
| Carbapenems             | 21/137 (15%)                       | 12/21 (57%)                                                            | 71/116 (61%)                                                           |
| MDR                     | 52/137 (38%)                       | 30/52 (58%)                                                            | 53/85 (62%)                                                            |
| Pseudomonas spp (n=     | 68)                                |                                                                        |                                                                        |
| ES cephalosporins       | 32/68 (47%)                        | 29/32 (91%)                                                            | 24/36 (67%)                                                            |
| Carbapenems             | 21/68 (31%)                        | 19/21 (90%)                                                            | 34/47 (72%)                                                            |
| MDR                     | 13/68 (19%)                        | 11/13 (85%)                                                            | 42/55 (76%)                                                            |
| Enterobacter spp (n=4   | 14)                                |                                                                        |                                                                        |
| ES cephalosporins       | 20/44 (45%)                        | 6/20 (30%)                                                             | 10/24 (42%)                                                            |
| Carbapenems             | 9/ 44 (20%)                        | 4/9 (44%)                                                              | 12/35 (34%)                                                            |
| MDR                     | 22/44 (50%)                        | 8/22 (36%)                                                             | 8/22 (36%)                                                             |
| Gram positive           |                                    |                                                                        |                                                                        |
| Coagulase-negative      | staphylococci (n=1                 | 150)                                                                   |                                                                        |
| Meticillin              | 85/140 (61%)                       | 23/85 (27%)                                                            | 14/55 (25%)                                                            |
| Vancomycin              | 0/138                              |                                                                        | 36/138 (26%)                                                           |
| Staphylococcus aureus   | s (n=122 )                         |                                                                        |                                                                        |
| Meticillin              | 43/114 (38%)                       | 16/43(37%)                                                             | 22/71 (31%)                                                            |
| Vancomycin              | 0/114                              |                                                                        | 38/114 (33%)                                                           |
| Enterococcus spp (n=    | 56)                                |                                                                        |                                                                        |
| Meticillin              | 11/14 (79%)                        | 10/11 (91%)                                                            | 2/3 (67%)                                                              |
| Vancomycin              | 13/48 (27%)                        | 9/13 (69%)                                                             | 20/35 (57%)                                                            |


# Burden of antimicrobial resistance in South-East Asia

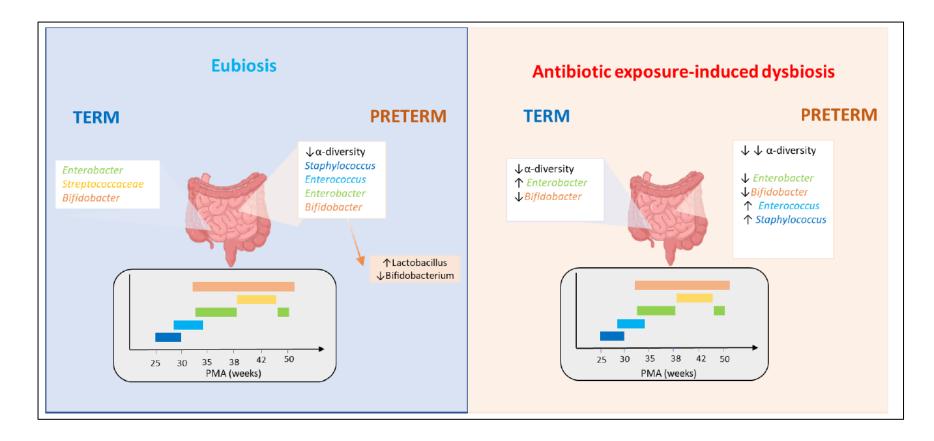
| Pathogen (total No of          | % of isolates resistant (95% CI); No of isolates |                             |                              |                              |                          |                     |  |  |
|--------------------------------|--------------------------------------------------|-----------------------------|------------------------------|------------------------------|--------------------------|---------------------|--|--|
| isolates)                      | Ampicillin                                       | Gentamicin                  | Cefotaxime                   | Ceftazidime                  | Meropenem/ meticillin    | Multidrug           |  |  |
| Hospital settings              |                                                  |                             |                              |                              |                          |                     |  |  |
| <i>Klebsiella</i> spp (n=4312) | 86.8 (85.8 to 87.3);<br>2806                     | 75.3 (74 to 76.7);<br>2954  | 72.5 (71.3 to 73.7);<br>4126 | 74.5 (73 to 75.9);<br>2455   | 10.4 (9.4 to 11.5); 2540 | 70.7 (66.1 to 75.3) |  |  |
| <i>E coli</i> (n=2798)         | 88.2 (87 to 89.5);<br>2196                       | 67.9 (66 to 69.8);<br>2254  | 66.9 (65.3 to 68.6);<br>2745 | 69.4 (67.4 to 71.4);<br>1773 | 8.1 (6.8 to 9.4); 1551   | 54.0 (48.1 to 59.9) |  |  |
| Acinetobacter spp<br>(n=1347)  | 86.2 (83.8 to 88.5);<br>633                      | 68.1 (65.1 to 71);<br>792   | 80.3 (78.2 to 82.4);<br>1121 | 73.6 (70.8 to 76.3);<br>718  | 64.8 (62.2 to 67.4); 828 | 78.7 (73.9 to 83.4  |  |  |
| <i>S aureus</i> (n=2437)       | 69 (67.3 to 70.6);<br>2266                       | 54.5 (52.4 to 56.6)<br>1773 | ; 51.2 (49 to 53.3);1753     | NA                           | 46.5 (41.9 to 51.1); 310 | NA                  |  |  |
| Community settings             |                                                  |                             |                              |                              |                          |                     |  |  |
| <i>Klebsiella</i> spp (n=116)  | 87.9 (82.3 to 93.5)                              | 22.8 (15 to 30.1)           | 25.7 (18 to 33.5)            | 28.5 (19.8 to 37.1)          | 0 (0 to 2)               | _                   |  |  |
| E coli (n=37)                  | 72.4 (58 to 86)                                  | 18.7 (6 to 31)              | 50.3 (35 to 65.7)            | 37 (13.3 to 60.6)            | 0 (0 to 2)               | _                   |  |  |
| S aureus (n=77)                | 74.6 (66.6 to 82.6)                              | 3 (0-9)                     | 9 (2 to 16)                  | NA                           | 10 (0 to 20.5)           | _                   |  |  |

- a. 50-88% of common isolates are resistant to first line antibiotics ampicillin and gentamicin
   b. 50.80% are multi-drug resistant
- b. 50-80% are multi-drug resistant

Chaurasia et al, BMJ 2019

## Antimicrobial resistance within One-Health Network




## What has antibiotic misuse led to?

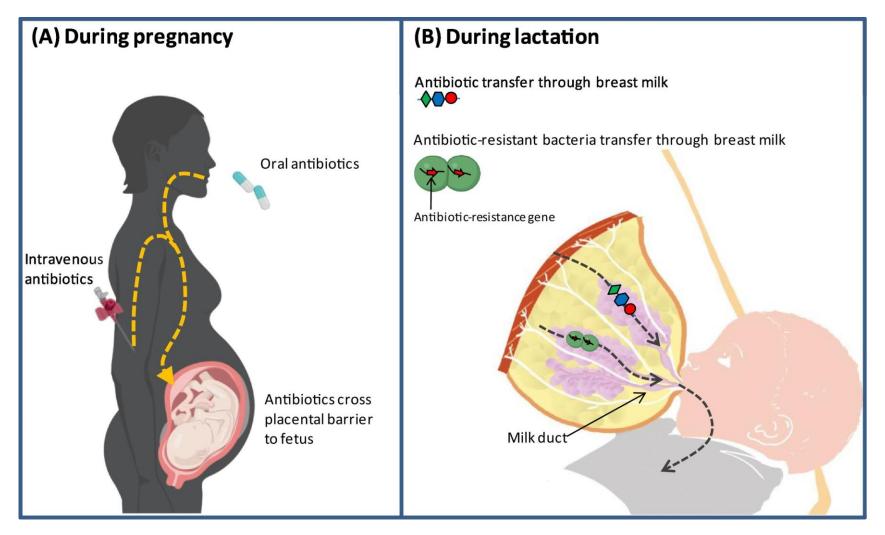
- Antimicrobial resistance
- Increase
  - Duration of hospitalization
  - Healthcare cost
  - Complications due to adverse effects of drugs & IV cannulation
  - Increased risk of infections

## How newborns are different?

- Microbiota is getting established
- <u>Microbiota-host cross talk</u> involved in biological process:
  - Immune maturation
  - Metabolic processes
  - Neurocognitive & neuro-behavioural process (Microbiome-gut-brainaxis)
- Gets affected with antibiotic exposure (perinatal and postnatal)

# Perinatal antibiotic exposure & neonatal gut microbiota




# Impact of antibiotic on gut microbiota and resistance development...

| Study              | <u>Infectio</u><br>Lower | <u>n and/or colonizati</u><br>Unchanged | <u>on rates</u><br>Higher | Risk estimates                              | Specific outcomes                               | Colonization<br>or infection |
|--------------------|--------------------------|-----------------------------------------|---------------------------|---------------------------------------------|-------------------------------------------------|------------------------------|
| Calil, 2001        |                          |                                         |                           | <mark>OR 2.5</mark> , 95% CI 1.08-5.77†     | MDR E. cloacae                                  | Colonization                 |
| Crivaro, 2007      |                          |                                         |                           | Not available                               | ESBL-producing S. marcescens &<br>K. pneumoniae | Colonization                 |
| Duman, 2005        |                          |                                         |                           | RR 14.05; 95% CI 1.19-164.62                | ESBL-producing Enterobacteriaceae               | Colonization                 |
| Giuffre, 2016      |                          |                                         |                           | Not available                               | MDR Gram-negative bacteria                      | Colonization                 |
|                    |                          |                                         |                           |                                             | ESBL-producing Gram-negative<br>bacteria        | Colonization                 |
| Kumar, 2014        |                          |                                         |                           | <mark>OR 26.04</mark> , 95% CI 3.51-35.45†  | Carbapenem-resistant A. baumannii               | Infection                    |
| Millar, 2008       |                          |                                         |                           | Not available                               | MDR Enterobacteriaceae                          | Colonization                 |
| Pessoa-Silva, 2003 |                          |                                         |                           | OR 3.23, 95% CI 0.99-10.49                  | ESBL-producing K. pneumoniae                    | Infection                    |
| Rettedal, 2013     |                          |                                         |                           | <mark>OR 5.5</mark> ; 95% CI 5.6-15.3†      | ESBL-producing K. pneumoniae                    | Colonization                 |
| Sehgal, 2007       |                          |                                         |                           | <mark>OR 17.80</mark> , 95% CI 1.91-165.54† | ESBL-producing Gram-negative                    | Infection                    |

## Impact of antibiotic on gut microbiota and resistance development (long vs. short duration)

| Study         | Infectio | n and/or colonizati | on rates | Risk estimates             | Specific outcomes                               | Colonization |
|---------------|----------|---------------------|----------|----------------------------|-------------------------------------------------|--------------|
| Study         | Lower    | Unchanged           | Higher   | KISK ESLIHIULES            | specific outcomes                               | or infection |
| Cantey, 2016  |          |                     |          | Not available              | MDR Gram-negative bacteria                      | Colonization |
| Crivaro, 2007 |          |                     |          | OR 1.32, 95% CI 1.02-1.70† | ESBL-producing S. marcescens &<br>K. pneumoniae | Colonization |
| Giuffre, 2016 |          |                     |          | Not available              | MDR Gram-negative bacteria                      | Colonization |
| Le, 2008      |          |                     |          | OR 1.04, 95% CI 1.01-1.07† | ESBL-producing Gram-negative<br>bacteria        | Colonization |
|               |          |                     |          | OR 3.09, 95% CI 1.28-7.49† | ESBL-producing Enterobacteriaceae               | Infection    |
| Mammina, 2007 |          |                     |          | Not available              | MDR Gram-negative bacteria                      | Colonization |

## Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis



Patangia et al; Trends Microbiol. 2022

# Antibiotics misuse – Specific disadvantage in neonates

#### **Short-term consequences**

- Increased risk of
  - Sepsis including fungal infections

(esp. with cephalosporins)

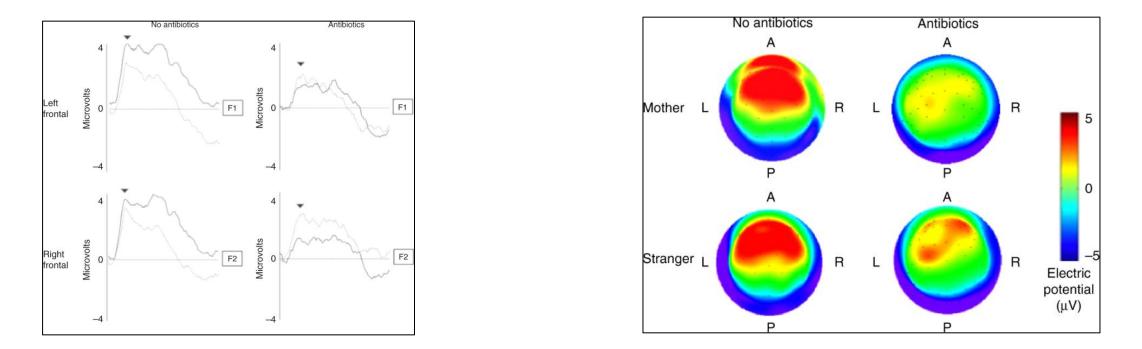
• NEC

#### Long-term consequences

- Increased risk of
  - Allergic diseases: Asthma, eczema, celiac disease
  - Metabolic disease: Obesity
  - Inflammatory bowel disease

• Death

Association with above morbidities is:


**1. Dose-dependent** 

2. Type of antibiotic given (broad vs narrow

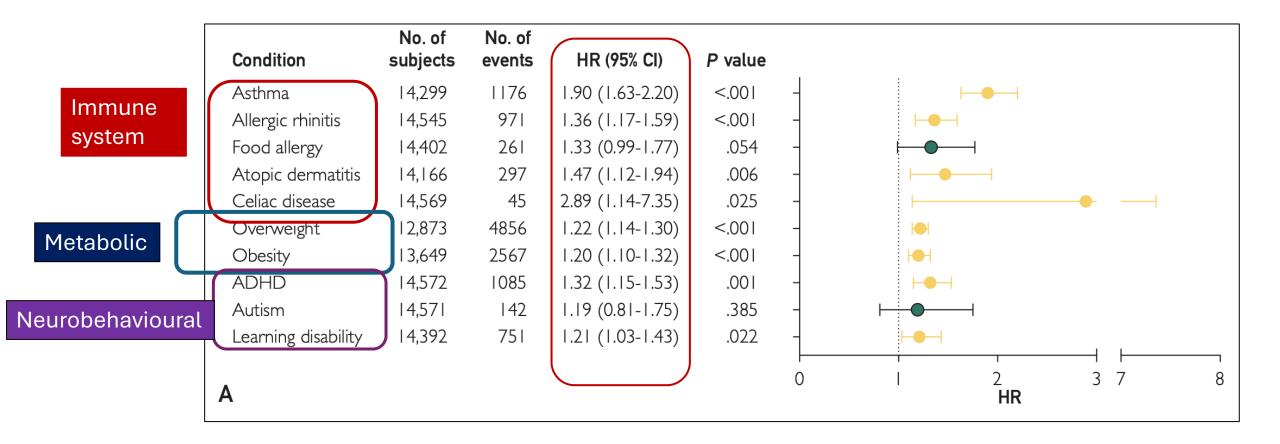
spectrum)

Alexander et al; J Pediatr 2011 Abdel Ghany et al; Ann Saudi Med. 2012 Ahmadizar et al; Pediatr Allergy Immunol. 2017

# Effect of antibiotics on recognition memory at one-month of age

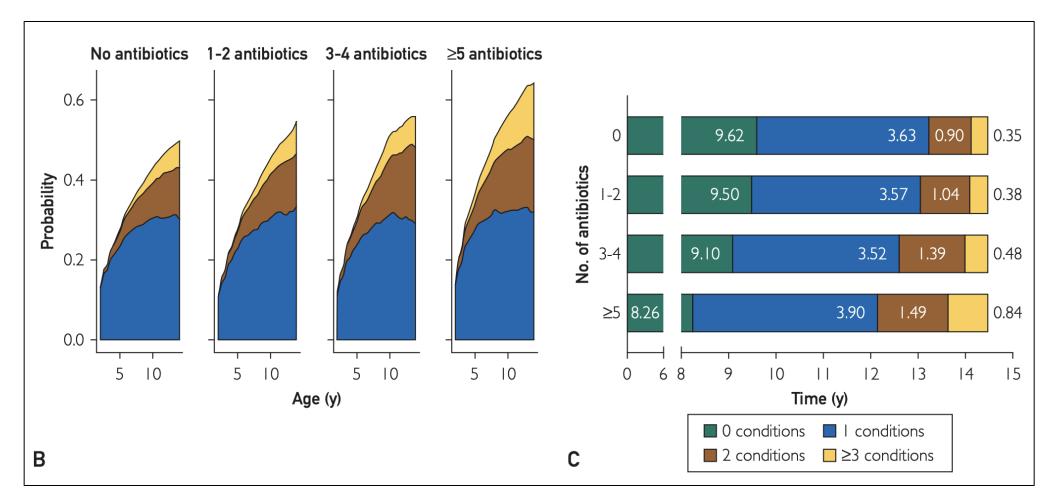


Otherwise healthy infants exposed to antibiotics soon after birth demonstrated <u>altered auditory processing and recognition memory</u> responses


Hickey et al; Pediatr Res. 2021

## Antibiotic exposure within first 2 years of age & childhood health outcomes...

| Characteristic                         | Not exposed (n=4352) | Exposed (n=10,220) | All (N=14,572 |
|----------------------------------------|----------------------|--------------------|---------------|
| Children                               |                      |                    |               |
| Sex                                    |                      |                    |               |
| Female                                 | 2223 (51.1)          | 4803 (47.0)        | 7026 (48.2)   |
| Male                                   | 2129 (48.9)          | 5417 (53.0)        | 7546 (51.8)   |
| Duration of follow-up (y) <sup>b</sup> | 8.4 (6.1-10.4)       | 9.1 (6.5-11.7)     | 8.8 (6.4-11.4 |
| Birth weight (kg)                      | 3.4 (3.1-3.7)        | 3.4 (3.1-3.8)      | 3.4 (3.1-3.8) |
| Ethnicity                              |                      |                    |               |
| White                                  | 2951 (67.8)          | 7397 (72.4)        | 10348 (71.0)  |
| Black                                  | 365 (8.4)            | 934 (9.1)          | 1299 (8.9)    |
| Asian                                  | 338 (7.8)            | 617 (6.0)          | 955 (6.6)     |
| Hawaiian/Pacific Islander              | 19 (0.4)             | 33 (0.3)           | 52 (0.4)      |
| American Indian                        | 18 (0.4)             | 28 (0.3)           | 46 (0.3)      |
| Other/unknown                          | 661 (15.2)           | 2   (  .8)         | 1872 (12.8)   |
| Cesarean section                       | 940 (21.6)           | 2434 (23.8)        | 3374 (23.2)   |
| Number of prescriptions                |                      |                    |               |
| I-2                                    | -                    | 4560 (44.6)        |               |
| 3-4                                    | -                    | 2434 (23.8)        |               |
| ≥5                                     | -                    | 3226 (31.6)        |               |
| Categories                             |                      |                    |               |
| Penicillins                            | _                    | 9306 (63.9)        |               |
| Cephalosporins                         | -                    | 3401 (23.3)        |               |
| Sulfonamides                           | -                    | 777 (5.3)          |               |
| Macrolides                             | _                    | 3724 (25.6)        |               |


Aversa et al; Mayo Clin Proc. 2021

## Antibiotic exposure within first 2 years of age & childhood health outcomes...



Aversa et al; Mayo Clin Proc. 2021

## Antibiotic exposure within first 2 years of age & childhood health outcomes...



Aversa et al; Mayo Clin Proc. 2021

## Key Messages

- Antimicrobial resistance is a global problem with huge burden more so in LMICs
- Misuse of antibiotics causes both short and long-term adverse effects
- These adverse effects may cause permanent disability demanding huge healthcare cost
- However, misuse of antibiotics is largely preventable by simple strategies

